
EMBREE
HIGH PERFORMANCE RAY TRACING KERNELS
Version 2.14.0
February 3, 2017

2

Contents

1 Embree Overview 4
1.1 Supported Platforms . 4
1.2 Embree Support and Contact . 5
1.3 Version History . 5
1.4 Acknowledgements . 11

2 Installation of Embree 12
2.1 Windows Installer . 12
2.2 Windows ZIP File . 12
2.3 Linux RPMs . 12
2.4 Linux tar.gz files . 13
2.5 Mac OS X PKG Installer . 13
2.6 Mac OS X tar.gz file . 14
2.7 Linking ISPC applications with Embree 14

3 Compiling Embree 15
3.1 Linux and Mac OS X . 15
3.2 Windows . 16
3.3 CMake Configuration . 18

4 Embree API 20
4.1 Scene . 22
4.2 Geometries . 24
4.3 Ray Layout . 34
4.4 Ray Queries . 36
4.5 Interpolation of Vertex Data . 39
4.6 Buffer Sharing . 40
4.7 Multi-Segment Motion Blur . 41
4.8 User Data Pointer . 41
4.9 Geometry Mask . 41
4.10 Filter Functions . 42
4.11 Displacement Mapping Functions 44
4.12 Extending the Ray Structure . 44
4.13 Sharing Threads with Embree . 45
4.14 Join Build Operation . 46
4.15 Memory Monitor Callback . 46
4.16 Progress Monitor Callback . 47
4.17 Configuring Embree . 47
4.18 Limiting number of Build Threads 47
4.19 Thread Creation and Affinity Settings 48
4.20 Huge Page Support . 49

CONTENTS 3

5 Embree Tutorials 50
5.1 Triangle Geometry . 51
5.2 Dynamic Scene . 51
5.3 User Geometry . 52
5.4 Viewer . 52
5.5 Stream Viewer . 52
5.6 Instanced Geometry . 53
5.7 Intersection Filter . 53
5.8 Pathtracer . 54
5.9 Hair . 54
5.10 Bézier Curves . 55
5.11 Subdivision Geometry . 55
5.12 Displacement Geometry . 56
5.13 Motion Blur Geometry . 56
5.14 Interpolation . 56
5.15 BVH Builder . 56
5.16 BVH Access . 57
5.17 Find Embree . 57

4

Chapter 1
Embree Overview

Embree is a collection of high-performance ray tracing kernels, developed at
Intel. The target user of Embree are graphics application engineers that want
to improve the performance of their application by leveraging the optimized ray
tracing kernels of Embree. The kernels are optimized for photo-realistic render-
ing on the latest Intel® processors with support for SSE, AVX, AVX2, and AVX512.
Embree supports runtime code selection to choose the traversal and build algo-
rithms that best matches the instruction set of your CPU. We recommend using
Embree through its API to get the highest benefit from future improvements.
Embree is released as Open Source under the Apache 2.0 license.

Embree supports applications written with the Intel SPMD Program Com-
piler (ISPC, https://ispc.github.io/) by also providing an ISPC interface
to the core ray tracing algorithms. This makes it possible to write a renderer
in ISPC that leverages SSE, AVX, AVX2, and AVX512 without any code change.
ISPC also supports runtime code selection, thus ISPC will select the best code
path for your application, while Embree selects the optimal code path for the ray
tracing algorithms.

Embree contains algorithms optimized for incoherent workloads (e.g. Monte
Carlo ray tracing algorithms) and coherent workloads (e.g. primary visibility and
hard shadow rays). For standard CPUs, the single-ray traversal kernels in Em-
bree provide the best performance for incoherent workloads and are very easy to
integrate into existing rendering applications. For AVX512 enabled machines, a
renderer written in ISPC using the default hybrid ray/packet traversal algorithms
have shown to perform best, but requires writing the renderer in ISPC. In general
for coherent workloads, ISPC outperforms the single ray mode on each platform.
Embree also supports dynamic scenes by implementing high performance two-
level spatial index structure construction algorithms.

In addition to the ray tracing kernels, Embree provides some tutorials to
demonstrate how to use the Embree API. The example photorealistic renderer
that was originally included in the Embree kernel package is now available in a
separate GIT repository (see Embree Example Renderer).

1.1 Supported Platforms
Embree supportsWindows (32 bit and 64 bit), Linux (64 bit) andMac OS X (64 bit).
The code compiles with the Intel Compiler, GCC, Clang and the Microsoft Com-
piler.

Using the Intel Compiler improves performance by approximately 10%. Per-
formance also varies across different operating systems, with Linux typically per-
forming best as it supports transparently transitioning to 2MB pages.

Embree is optimized for Intel CPUs supporting SSE, AVX, AVX2, and AVX-
512 instructions, and requires at least a CPU with support for SSE2.

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/
https://embree.github.io/renderer.html

Embree Overview 5

1.2 Embree Support and Contact
If you encounter bugs please report them via Embree’s GitHub Issue Tracker.

For questions please write us at embree_support@intel.com.
To receive notifications of updates and new features of Embree please sub-

scribe to the Embree mailing list.

1.3 Version History

1.3.1 New Features in Embree 2.14.0
• Added ignore_config_files option to init flags that allows the applica-
tion to ignore Embree configuration files.

• Face-varying interpolation is now supported for subdivision surfaces.
• Up to 16 user vertex buffers are supported for vertex attribute interpola-
tion.

• Deprecated rtcSetBoundaryMode function, please use the new rtcSet-
SubdivisionMode function.

• Added RTC_SUBDIV_PIN_BOUNDARY mode for handling boundaries of sub-
division meshes.

• Added RTC_SUBDIV_PIN_ALLmode to enforce linear interpolation for sub-
division meshes.

• Optimized object generation performance for dynamic scenes.
• Reduced memory consumption when using lots of small dynamic objects.
• Fixed bug for subdivision surfaces using low tessellation rates.
• Hair geometry now uses a new ribbon intersector that intersects with ray-
facing quads. The new intersector also returns the v-coordinate of the hair
intersection, and fixes artefacts at junction points between segments, at the
cost of a small performance hit.

• Added rtcSetBuffer2 function, that additionally gets the number of el-
ements of a buffer. In dynamic scenes, this function allows to quickly
change buffer sizes, making it possible to change the number of primitives
of a mesh or the number of crease features for subdivision surfaces.

• Added simple ‘viewer_anim’ tutorial for rendering key frame animations
and ‘buildbench’ for measuring BVH (re-)build performance for static and
dynamic scenes.

• Added more AVX512 optimizations for future architectures.

1.3.2 New Features in Embree 2.13.0
• Improved performance for compact (but not robust) scenes.
• Added robust mode for motion blurred triangles and quads.
• Added fast dynamic mode for user geometries.
• Up to 20% faster BVH build performance on the second generation Intel®
Xeon Phi™ processor codenamed Knights Landing.

• Improved quality of the spatial split builder.
• Improved performance for coherent streams of ray packets (SOA layout),
e.g. for fast primary visibility.

• Various bug fixes in tessellation cache, quad-based spatial split builder, etc.

1.3.3 New Features in Embree 2.12.0
• Added support for multi-segment motion blur for all primitive types.

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/

Embree Overview 6

• API support for stream of pointers to single rays (rtcIntersect1Mp and
rtcOccluded1Mp)

• Improved BVH refitting performance for dynamic scenes.
• Improved high-quality mode for quads (added spatial split builder for
quads)

• Faster dynamic scenes for triangle and quad-based meshes on AVX2 en-
abled machines.

• Performance and correctness bugfix in optimization for streams of coher-
ent (single) rays.

• Fixed large memory consumption (issue introduced in Embree v2.11.0). If
you use Embree v2.11.0 please upgrade to Embree v2.12.0.

• Reducedmemory consumption for dynamic scenes containing smallmeshes.
• Added support to start and affinitize TBB worker threads by passing
“start_threads=1,set_affinity=1” to rtcNewDevice. These settings
are recommended on systems with a high thread count.

• rtcInterpolate2 can now be called within a displacement shader.
• Added initial support for Microsoft’s Parallel Pattern Library (PPL) as
tasking system alternative (for optimal performance TBB is highly rec-
ommended).

• Updated to TBB 2017 which is released under the Apache v2.0 license.
• Dropped support for Visual Studio 2012 Win32 compiler. Visual Studio
2012 x64 is still supported.

1.3.4 New Features in Embree 2.11.0
• Improved performance for streams of coherent (single) rays flagged with
RTC_INTERSECT_COHERENT. For such coherent ray streams, e.g. primary
rays, the performance typically improves by 1.3–2×.

• New spatial split BVH builder for triangles, which is 2–6× faster than the
previous version and more memory conservative.

• Improved performance and scalability of all standard BVH builders on sys-
tems with large core counts.

• Fixed rtcGetBounds for motion blur scenes.
• Thread affinity is now on by default when running on the latest Intel®
Xeon Phi™ processor.

• Added AVX512 support for future Intel® Xeon processors.

1.3.5 New Features in Embree 2.10.0
• Added a new curve geometry which renders the sweep surface of a circle
along a Bézier curve.

• Intersection filters can update the tfar ray distance.
• Geometry types can get disabled at compile time.
• Modified and extended the ray stream API.
• Added new callback mechanism for the ray stream API.
• Improved ray stream performance (up to 5–10%).
• Up to 20% faster morton builder on machines with large core counts.
• Lots of optimizations for the second generation Intel® Xeon Phi™ proces-
sor codenamed Knights Landing.

• Added experimental support for compressed BVHnodes (reduces node size
to 56–62% of uncompressed size). Compression introduces a typical per-
formance overhead of ~10%.

• Bugfix in backface culling mode. We do now properly cull the backfaces
and not the frontfaces.

Embree Overview 7

• Feature freeze for the first generation Intel® Xeon Phi™ coprocessor code-
named Knights Corner. We will still maintain and add bug fixes to Embree
v2.9.0, but Embree 2.10 and future versions will no longer support it.

1.3.6 New Features in Embree 2.9.0
• Improved shadow ray performance (10–100% depending on the scene).
• Added initial support for ray streams (10–30% higher performance depend-
ing on ray coherence in the stream).

• Added support to calculate second order derivatives using the rtcInter-
polate2 function.

• Changed the parametrization for triangular subdivision faces to the same
scheme used for pentagons.

• Added support to query the Embree configuration using the rtcDeviceGet-
Parameter function.

1.3.7 New Features in Embree 2.8.1
• Added support for setting per geometry tessellation rate (supported for
subdivision and Bézier geometries).

• Added support for motion blurred instances.

1.3.8 New Features in Embree 2.8.0
• Added support for line segment geometry.
• Added support for quad geometry (replaces triangle-pairs feature).
• Added support for linear motion blur of user geometries.
• Improved performance through AVX512 optimizations.
• Improved performance of lazy scene build (when using TBB 4.4 update 2).
• Improved performance through huge page support under linux.

1.3.9 New Features in Embree 2.7.1
• Internal tasking system supports cancellation of build operations.
• ISPC mode for robust and compact scenes got significantly faster (imple-
mented hybrid traversal for bvh4.triangle4v and bvh4.triangle4i).

• Hair rendering got faster as we fixed some issues with the SAH heuristic
cost factors.

• BVH8 got slight faster for single ray traversal (improved sorting when hit-
ting more than 4 boxes).

• BVH build performance got up to 30% faster on CPUswith high core counts
(improved parallel partition code).

• High quality build mode again working properly (spatial splits had been
deactivated in v2.7.0 due to some bug).

• Support for merging two adjacent triangles sharing a common edge into a
triangle-pair primitive (can reduce memory consumption and BVH build
times by up to 50% for mostly quad-based input meshes).

• Internal cleanups (reduced number of traversal kernels by more templat-
ing)

• Reduced stack size requirements of BVH builders.
• Fixed crash for dynamic scenes, triggered by deleting all geometries from
the scene.

Embree Overview 8

1.3.10 New Features in Embree 2.7.0
• Added device concept to Embree to allow different components of an ap-
plication to use Embree without interfering with each other.

• Fixed memory leak in twolevel builder used for dynamic scenes.
• Fixed bug in tesselation cache that caused crashes for subdivision surfaces.
• Fixed bug in internal task scheduler that caused deadlocks when using
rtcCommitThread.

• Improved hit-distance accuracy for thin triangles in robust mode.
• Added support to disable ray packet support in cmake.

1.3.11 New Features in Embree 2.6.2
• Fixed bug triggered by instantiating motion blur geometry.
• Fixed bug in hit UV coordinates of static subdivision geometries.
• Performance improvements when only changing tessellation levels for sub-
division geometry per frame.

• Added ray packet intersectors for subdivision geometry, resulting in im-
proved performance for coherent rays.

• Reduced virtual address space usage for static geometries.
• Fixed some AVX2 code paths when compiling with GCC or Clang.
• Bugfix for subdiv patches with non-matching winding order.
• Bugfix in ISA detection of AVX512.

1.3.12 New Features in Embree 2.6.1
• Major performance improvements for ray tracing subdivision surfaces,
e.g. up to 2× faster for scenes where only the tessellation levels are chang-
ing per frame, and up to 3× faster for scenes with lots of crease features

• Initial support for architectures supporting the new 16-wide AVX512 ISA
• Implemented intersection filter callback support for subdivision surfaces
• Added RTC_IGNORE_INVALID_RAYS CMake option which makes the ray
intersectors more robust against full tree traversal caused by invalid ray
inputs (e.g. INF, NaN, etc)

1.3.13 New Features in Embree 2.6.0
• Added rtcInterpolate function to interpolate per vertex attributes
• Added rtcSetBoundaryMode function that can be used to select the bound-
ary handling for subdivision surfaces

• Fixed a traversal bug that caused rays with very small ray direction com-
ponents to miss geometry

• Performance improvements for the robust traversal mode
• Fixed deadlock when calling rtcCommit from multiple threads on same
scene

1.3.14 New Features in Embree 2.5.1
• On dual socket workstations, the initial BVH build performance almost
doubled through a better memory allocation scheme

• Reduced memory usage for subdivision surface objects with crease fea-
tures

• rtcCommit performance is robust against unset “flush to zero” and “denor-
mals are zero” flags. However, enabling these flags in your application is
still recommended

Embree Overview 9

• Reduced memory usage for subdivision surfaces with borders and in-
finitely sharp creases

• Lots of internal cleanups and bug fixes for both Intel® Xeon® and Intel®
Xeon Phi™

1.3.15 New Features in Embree 2.5.0
• Improved hierarchy build performance on both Intel Xeon and Intel Xeon
Phi

• Vastly improved tessellation cache for ray tracing subdivision surfaces
• Added rtcGetUserData API call to query per geometry user pointer set
through rtcSetUserData

• Added support for memory monitor callback functions to track and limit
memory consumption

• Added support for progress monitor callback functions to track build
progress and cancel long build operations

• BVH builders can be used to build user defined hierarchies inside the ap-
plication (see tutorial BVH Builder)

• Switched to TBB as default tasking system on Xeon to get even faster hi-
erarchy build times and better integration for applications that also use
TBB

• rtcCommit can get called from multiple TBB threads to join the hierarchy
build operations

1.3.16 New Features in Embree 2.4
• Support for Catmull Clark subdivision surfaces (triangle/quad base primi-
tives)

• Support for vector displacements on Catmull Clark subdivision surfaces
• Various bug fixes (e.g. 4-byte alignment of vertex buffers works)

1.3.17 New Features in Embree 2.3.3
• BVH builders more robustly handle invalid input data (Intel Xeon proces-
sor family)

• Motion blur support for hair geometry (Xeon)
• Improved motion blur performance for triangle geometry (Xeon)
• Improved robust ray tracing mode (Xeon)
• Added rtcCommitThread API call for easier integration into existing task-
ing systems (Xeon and Intel Xeon Phi coprocessor)

• Added support for recording and replaying all rtcIntersect/rtcOccluded
calls (Xeon and Xeon Phi)

1.3.18 New Features in Embree 2.3.2
• Improved mixed AABB/OBB-BVH for hair geometry (Xeon Phi)
• Reduced amount of pre-allocated memory for BVH builders (Xeon Phi)
• New 64 bit Morton code-based BVH builder (Xeon Phi)
• (Enhanced) Morton code-based BVH builders use now tree rotations to
improve BVH quality (Xeon Phi)

• Bug fixes (Xeon and Xeon Phi)

Embree Overview 10

1.3.19 New Features in Embree 2.3.1
• High quality BVH mode improves spatial splits which result in up to 30%
performance improvement for some scenes (Xeon)

• Compile time enabled intersection filter functions do not reduce perfor-
mance if no intersection filter is used in the scene (Xeon and Xeon Phi)

• Improved ray tracing performance for hair geometry by >20% on Xeon Phi.
BVH for hair geometry requires 20% less memory

• BVH8 for AVX/AVX2 targets improves performance for single ray tracing
on Haswell by up to 12% and by up to 5% for hybrid (Xeon)

• Memory conservative BVH for Xeon Phi now uses BVH node quantiza-
tion to lower memory footprint (requires half the memory footprint of the
default BVH)

1.3.20 New Features in Embree 2.3
• Support for ray tracing hair geometry (Xeon and Xeon Phi)
• Catching errors through error callback function
• Faster hybrid traversal (Xeon and Xeon Phi)
• New memory conservative BVH for Xeon Phi
• Faster Morton code-based builder on Xeon
• Faster binned-SAH builder on Xeon Phi
• Lots of code cleanups/simplifications/improvements (Xeon and Xeon Phi)

1.3.21 New Features in Embree 2.2
• Support for motion blur on Xeon Phi
• Support for intersection filter callback functions
• Support for buffer sharing with the application
• Lots of AVX2 optimizations, e.g. ~20% faster 8-wide hybrid traversal
• Experimental support for 8-wide (AVX/AVX2) and 16-wide BVHs (Xeon
Phi)

1.3.22 New Features in Embree 2.1
• New future proof API with a strong focus on supporting dynamic scenes
• Lots of optimizations for 8-wide AVX2 (Haswell architecture)
• Automatic runtime code selection for SSE, AVX, and AVX2
• Support for user-defined geometry
• New and improved BVH builders:

– Fast adaptive Morton code-based builder (without SAH-based top-
level rebuild)

– Both the SAH and Morton code-based builders got faster (Xeon Phi)
– New variant of the SAH-based builder using triangle pre-splits (Xeon

Phi)

1.3.23 Example Performance Numbers for Embree 2.1
BVH rebuild performance (including triangle accel generation, excluding mem-
ory allocation) for scenes with 2–12 million triangles:

• Intel® Core™ i7 (Haswell-based CPU, 4 cores @ 3.0 GHz)

– 7–8 million triangles/s for the SAH-based BVH builder
– 30–36 million triangles/s for the Morton code-based BVH builder

Embree Overview 11

• Intel® Xeon Phi™ 7120

– 37–40 million triangles/s for the SAH-based BVH builder
– 140–160 million triangles/s for the Morton code-based BVH builder

Rendering of the Crown model (crown.ecs) with 4 samples per pixel (-spp
4):

• Intel® Core™ i7 (Haswell-based CPU, 4 cores CPU @ 3.0 GHz)

– 1024×1024 resolution: 7.8 million rays per sec
– 1920×1080 resolution: 9.9 million rays per sec

• Intel® Xeon Phi™ 7120

– 1024×1024 resolution: 47.1 million rays per sec
– 1920×1080 resolution: 61.1 million rays per sec

1.3.24 New Features in Embree 2.0
• Support for the Intel® Xeon Phi™ coprocessor platform
• Support for high-performance “packet” kernels on SSE, AVX, and Xeon Phi
• Integration with the Intel® SPMD Program Compiler (ISPC)
• Instantiation and fast BVH reconstruction
• Example photo-realistic rendering engine for both C++ and ISPC

1.4 Acknowledgements
This software is based in part on the work of the Independent JPEG Group.

12

Chapter 2
Installation of Embree

2.1 Windows Installer
You can install the 64 bit version of the Embree library using the Windows in-
staller application embree-2.14.0-x64.exe. This will install the 64 bit Embree ver-
sion by default in Program Files\Intel\Embree v2.14.0 x64. To install the
32 bit Embree library use the embree-2.14.0-win32.exe installer. This will install
the 32 bit Embree version by default in Program Files\Intel\Embree v2.14.
0 win32 on 32 bit systems and Program Files (x86)\Intel\Embree v2.14.0
win32 on 64 bit systems.

You have to set the path to the lib folder manually to your PATH environment
variable for applications to find Embree. To compile applications with Embree
you also have to set the Include Directories path in Visual Studio to the
include folder of the Embree installation.

To uninstall Embree again open Programs and Features by clicking the
Start button, clicking Control Panel, clicking Programs, and then clicking
Programs and Features. Select Embree 2.14.0 and uninstall it.

2.2 Windows ZIP File
Embree is also delivered as a ZIP file for 64 bit embree-2.14.0.x64.windows.zip
and 32 bit embree-2.14.0.win32.windows.zip. After unpacking this ZIP file you
should set the path to the lib folder manually to your PATH environment variable
for applications to find Embree. To compile applications with Embree you also
have to set the Include Directories path in Visual Studio to the include
folder of the Embree installation.

If you plan to ship Embree with your application, best use the Embree version
from this ZIP file.

2.3 Linux RPMs
Uncompress the ‘tar.gz’ file embree-2.14.0.x86_64.rpm.tar.gz to obtain the indi-
vidual RPM files:

tar xzf embree-2.14.0.x86_64.rpm.tar.gz

To install the Embree using the RPM packages on your Linux system type
the following:

sudo rpm --install embree-lib-2.14.0-1.x86_64.rpm
sudo rpm --install embree-devel-2.14.0-1.x86_64.rpm
sudo rpm --install embree-examples-2.14.0-1.x86_64.rpm

https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.x64.exe
https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.win32.exe
https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.x64.windows.zip
https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.win32.windows.zip
https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.x86_64.rpm.tar.gz

Installation of Embree 13

You also have to install the Intel® Threading Building Blocks (TBB) using yum:

sudo yum install tbb.x86_64 tbb-devel.x86_64

or via apt-get:

sudo apt-get install libtbb-dev

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the LD_LIBRARY_PATH en-
vironment variable to point to the TBB library.

Note that the Embree RPMs are linked against the TBB version coming with
CentOS. This older TBB version is missing some features required to get optimal
build performance and does not support building of scenes lazily during render-
ing. To get a full featured Embree please install using the tar.gz files, which
always ship with the latest TBB version.

Under Linux Embree is installed by default in the /usr/lib and /usr/in-
clude directories. This way applications will find Embree automatically. The
Embree tutorials are installed into the /usr/bin/embree2 folder. Specify the
full path to the tutorials to start them.

To uninstall Embree again just execute the following:

sudo rpm --erase embree-lib-2.14.0-1.x86_64
sudo rpm --erase embree-devel-2.14.0-1.x86_64
sudo rpm --erase embree-examples-2.14.0-1.x86_64

2.4 Linux tar.gz files
The Linux version of Embree is also delivered as a tar.gz file embree-2.14.0.x86_64.linux.tar.gz.
Unpack this file using tar and source the provided embree-vars.sh (if you are
using the bash shell) or embree-vars.csh (if you are using the C shell) to setup
the environment properly:

tar xzf embree-2.14.0.x64.linux.tar.gz
source embree-2.14.0.x64.linux/embree-vars.sh

If youwant to ship Embree with your application best use the Embree version
provided through the tar.gz file.

We recommend adding a relative RPATH to your application that points to
the location Embree (and TBB) can be found, e.g. $ORIGIN/../lib.

2.5 Mac OS X PKG Installer
To install the Embree library on your Mac OS X system use the provided pack-
age installer inside embree-2.14.0.x86_64.dmg. This will install Embree by de-
fault into /opt/local/lib and /opt/local/include directories. The Embree
tutorials are installed into the /Applications/Embree2 folder.

You also have to install the Intel® Threading Building Blocks (TBB) using
MacPorts:

sudo port install tbb

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the DYLD_LIBRARY_PATH
environment variable to point to the TBB library.

To uninstall Embree again execute the uninstaller script /Applications/
Embree2/uninstall.command.

https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download
https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.x86_64.dmg
http://www.macports.org/
https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download

Installation of Embree 14

2.6 Mac OS X tar.gz file
TheMacOSX version of Embree is also delivered as a tar.gz file embree-2.14.0.x86_64.macosx.tar.gz.
Unpack this file using tar and source the provided embree-vars.sh (if you are
using the bash shell) or embree-vars.csh (if you are using the C shell) to setup
the environment properly:

tar xzf embree-2.14.0.x64.macosx.tar.gz
source embree-2.14.0.x64.macosx/embree-vars.sh

If you want to ship Embree with your application please use the Embree li-
brary of the provided tar.gz file. The library name of that Embree library is of
the form @rpath/libembree.2.dylib (and similar also for the included TBB
library). This ensures that you can add a relative RPATH to your application that
points to the location Embree (and TBB) can be found, e.g. @loader_path/../
lib.

2.7 Linking ISPC applications with Embree
The precompiled Embree library uses the multi-target mode of ISPC. For your
ISPC application to properly link against Embree you also have to enable this
mode. You can do this by specifying multiple targets when compiling your ap-
plication with ISPC, e.g.:

ispc --target sse2,sse4,avx,avx2 -o code.o code.ispc

https://github.com/embree/embree/releases/download/v2.14.0/embree-2.14.0.x86_64.macosx.tar.gz

15

Chapter 3
Compiling Embree

We recommend to use CMake to build Embree. Do not enable fast-math opti-
mization, these might break Embree.

3.1 Linux and Mac OS X
To compile Embree you need a modern C++ compiler that supports C++11. Em-
bree is tested with Intel® Compiler 16.0.4, Clang 3.8.0, and GCC 5.4.0. If the GCC
that comes with your Fedora/Red Hat/CentOS distribution is too old then you
can run the provided script scripts/install_linux_gcc.sh to locally install
a recent GCC into $HOME/devtools-2.

Embree supports to use the Intel® Threading Building Blocks (TBB) as tasking
system. For performance and flexibility reasons we recommend to use Embree
with the Intel® Threading Building Blocks (TBB) and best also use TBB inside
your application. Optionally you can disable TBB in Embree through the EM-
BREE_TASKING_SYSTEM CMake variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straight forward parallelization of an entire renderer. If you do not want to
use ISPC then you can disable ENABLE_ISPC_SUPPORT in CMake. Otherwise,
download and install the ISPC binaries (we have tested ISPC version 1.9.0) from
ispc.github.io. After installation, put the path to ispc permanently into your
PATH environment variable or you need to correctly set the ISPC_EXECUTABLE
variable during CMake configuration.

You additionally have to install CMake 2.8.11 or higher and the developer
version of GLUT.

Under Mac OS X, all these dependencies can be installed using MacPorts:

sudo port install cmake tbb freeglut

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake.x86_64
sudo yum install tbb.x86_64 tbb-devel.x86_64
sudo yum install freeglut.x86_64 freeglut-devel.x86_64
sudo yum install libXmu.x86_64 libXi.x86_64
sudo yum install libXmu-devel.x86_64 libXi-devel.x86_64

Type the following to install the dependencies using apt-get:

https://ispc.github.io/downloads.html
http://www.macports.org/

Compiling Embree 16

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install freeglut3-dev
sudo apt-get install libxmu-dev libxi-dev

Finally you can compile Embree using CMake. Create a build directory inside
the Embree root directory and execute ccmake .. inside this build directory.

mkdir build
cd build
ccmake ..

Per default CMake will use the compilers specified with the CC and CXX en-
vironment variables. Should you want to use a different compiler, run cmake
first and set the CMAKE_CXX_COMPILER and CMAKE_C_COMPILER variables to the
desired compiler. For example, to use the Intel Compiler instead of the default
GCC on most Linux machines (g++ and gcc) execute

cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc ..

Similarly, to use Clang set the variables to clang++ and clang, respectively.
Note that the compiler variables cannot be changed anymore after the first run
of cmake or ccmake.

Running ccmake will open a dialog where you can perform various config-
urations as described below in CMake Configuration. After having configured
Embree, press c (for configure) and g (for generate) to generate a Makefile and
leave the configuration. The code can be compiled by executing make.

make

The executables will be generated inside the build folder. We recommend to
finally install the Embree library and header files on your system. Therefore set
the CMAKE_INSTALL_PREFIX to /usr in cmake and type:

sudo make install

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then you
have to make sure the path /usr/local/lib is in your LD_LIBRARY_PATH.

You can also uninstall Embree again by executing:

sudo make uninstall

If you cannot install Embree on your system (e.g. when you don’t have ad-
ministrator rights) you need to add embree_root_directory/build to your LD_LI-
BRARY_PATH.

3.2 Windows
Embree is tested under Windows using the Visual Studio 2015 (Update 1) com-
piler (Win32 and x64), Visual Studio 2013 (Update 5) compiler (Win32 and x64),
Visual Studio 2012 (Update 4) compiler (x64 only), Intel® Compiler 16.0.1 (Win32
and x64), and Clang 3.9 (x64 only). Using the Visual Studio 2015 compiler, Vi-
sual Studio 2013 compiler, Intel Compiler, and Clang you can compile Embree
for AVX2, while Visual Studio 2012 supports at most AVX. To compile Embree
for AVX512 you have to use the Intel Compiler.

Embree supports to use the Intel® Threading Building Blocks (TBB) as tasking
system. For performance and flexibility reasons we recommend to use Embree
with the Intel® Threading Building Blocks (TBB) and best also use TBB inside

Compiling Embree 17

your application. Optionally you can disable TBB in Embree through the EM-
BREE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB) instal-
lation that comes with the Intel® Compiler, or you can install the binary dis-
tribution of TBB directly from www.threadingbuildingblocks.org into a folder
named tbb into your Embree root directory. You also have to make sure that the
libraries tbb.dll and tbb_malloc.dll can be found when executing your Embree ap-
plications, e.g. by putting the path to these libraries into your PATH environment
variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straight forward parallelization of an entire renderer. If you do not want to
use ISPC then you can disable ENABLE_ISPC_SUPPORT in CMake. Otherwise,
download and install the ISPC binaries (we have tested ISPC version 1.9.0) from
ispc.github.io. After installation, put the path to ispc.exe permanently into
your PATH environment variable or you need to correctly set the ISPC_EXE-
CUTABLE variable during CMake configuration.

You additionally have to install CMake (version 2.8.11 or higher). Note that
you need a native Windows CMake installation, because CMake under Cygwin
cannot generate solution files for Visual Studio.

3.2.1 Using the IDE
Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for a
32 bit build or “Visual Studio 12 2013 Win64” for a 64 bit build. If you want to
use Clang for compilation, you have to specify LLVM-vs2013 as “Optional toolset
to use (-T parameter)”. Most configuration parameters described in the CMake
Configuration can be set under Windows as well. Finally, click “Generate” to
create the Visual Studio solution files.

Table 3.1 –Windows-specific CMake build options for Embree.

Option Description Default

CMAKE_CONFIGURATION_TYPE List of generated configurations. Debug;Release;RelWithDebInfo
USE_STATIC_RUNTIME Use the static version of the C/C++ runtime

library.
OFF

For compilation of Embree under Windows use the generated Visual Studio
solution file embree2.sln. The solution is by default setup to use the Microsoft
Compiler. You can switch to the Intel Compiler by right clicking onto the solution
in the Solution Explorer and then selecting the Intel Compiler. We recommend
using 64 bit mode and the Intel Compiler for best performance.

To build Embree with support for the AVX2 instruction set you need at least
Visual Studio 2013 Update 4. When switching to the Intel Compiler to build with
AVX2 you currently need to manually remove the switch /arch:AVX2 from the
embree_avx2 project, which can be found under Properties ⇒ C/C++ ⇒ All
Options⇒ Additional Options.

To build all projects of the solution it is recommend to build the CMake utility
project ALL_BUILD, which depends on all projects. Using “Build Solution” would
also build all other CMake utility projects (such as INSTALL), which is usually
not wanted.

We recommend enabling syntax highlighting for the .ispc source and .isph
header files. To do so open Visual Studio, go to Tools ⇒ Options ⇒ Text Editor
⇒ File Extension and add the isph and ispc extension for the “Microsoft Visual
C++” editor.

https://www.threadingbuildingblocks.org/download
https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Compiling Embree 18

3.2.2 Using the Command Line
Embree can also be configured and built without the IDE using the Visual Studio
command prompt:

cd path\to\embree
mkdir build
cd build
cmake -G "Visual Studio 12 2013 Win64" ..
cmake --build . --config Release

To switch to the Intel Compiler use

ICProjConvert150 embree2.sln /IC /s /f

You can also build only some projects with the --target switch. Additional
parameters after “--” will be passed to msbuild. For example, to build the Em-
bree library in parallel use

cmake --build . --config Release --target embree -- /m

3.3 CMake Configuration
The default CMake configuration in the configuration dialog should be appro-
priate for most usages. The following table describes all parameters that can be
configured in CMake:

Compiling Embree 19

Table 3.2 – CMake build options for Embree.

Option Description Default

CMAKE_BUILD_TYPE Can be used to switch between Debug mode (Debug),
Release mode (Release), and Release mode with enabled
assertions and debug symbols (RelWithDebInfo).

Release

EMBREE_ISPC_SUPPORT Enables ISPC support of Embree. ON
EMBREE_STATIC_LIB Builds Embree as a static library. When using the

statically compiled Embree library, you have to define
ENABLE_STATIC_LIB before including rtcore.h in your
application.

OFF

EMBREE_TUTORIALS Enables build of Embree tutorials. ON
EMBREE_BACKFACE_CULLING Enables backface culling, i.e. only surfaces facing a ray

can be hit.
OFF

EMBREE_INTERSECTION_FILTER Enables the intersection filter feature. ON
EMBREE_INTERSECTION_FILTER _RESTORE Restore previous hit when ignoring hits. ON
EMBREE_RAY_MASK Enables the ray masking feature. OFF
EMBREE_RAY_PACKETS Enables ray packet support. ON
EMBREE_IGNORE_INVALID_RAYS Makes code robust against the risk of full-tree traversals

caused by invalid rays (e.g. rays containing INF/NaN as
origins).

OFF

EMBREE_TASKING_SYSTEM Chooses between Intel® Threading Building Blocks
(TBB) or an internal tasking system (INTERNAL).

TBB

EMBREE_MAX_ISA Select highest supported ISA (SSE2, SSE4.2, AVX, AVX2,
AVX512KNL, AVX512SKX, or NONE). When set to
NONE the EMBREE_ISA_* variables can be used to
enable ISAs individually.

AVX2

EMBREE_ISA_SSE42 Enables SSE4.2 when EMBREE_MAX_ISA is set to
NONE.

OFF

EMBREE_ISA_AVX Enables AVX when EMBREE_MAX_ISA is set to NONE. OFF
EMBREE_ISA_AVX2 Enables AVX2 when EMBREE_MAX_ISA is set to

NONE.
OFF

EMBREE_ISA_AVX512KNL Enables AVX512 for Xeon Phi when
EMBREE_MAX_ISA is set to NONE.

OFF

EMBREE_ISA_AVX512SKX Enables AVX512 for Skylake when EMBREE_MAX_ISA
is set to NONE.

OFF

EMBREE_GEOMETRY_TRIANGLES Enables support for triangle geometries. ON
EMBREE_GEOMETRY_QUADS Enables support for quad geometries. ON
EMBREE_GEOMETRY_LINES Enables support for line geometries. ON
EMBREE_GEOMETRY_HAIR Enables support for hair geometries. ON
EMBREE_GEOMETRY_SUBDIV Enables support for subdiv geometries. ON
EMBREE_GEOMETRY_USER Enables support for user geometries. ON

20

Chapter 4
Embree API

The Embree API is a low level ray tracing API that supports defining and com-
mitting of geometry and performing ray queries of different types. Static and
dynamic scenes are supported, that may contain triangle geometries, quad ge-
ometries, line segment geometries, hair geometries, analytic bezier curves, sub-
division meshes, instanced geometries, and user defined geometries. For each
geometry type multi-segment motion blur is supported, including support for
transformation motion blur of instances. Supported ray queries are, finding the
closest scene intersection along a ray, and testing a ray segment for any inter-
section with the scene. Single rays, as well as packets of rays in a struct of array
layout can be used for packet sizes of 1, 4, 8, and 16 rays. Using the ray stream
interface a stream of an arbitrary number M of ray packets of arbitrary size N can
be processed. Filter callback functions are supported, that get invoked for every
intersection encountered during traversal.

The Embree API exists in a C++ and ISPC version. This document describes
the C++ version of the API, the ISPC version is almost identical. The only differ-
ences are that the ISPC version needs some ISPC specific uniform typemodifiers,
and has special functions that operate on ray packets of the native SIMD size the
ISPC code is compiled for.

Embree supports two modes for a scene, the normal mode and stream mode,
which require different ray queries and callbacks to be used. The normal mode is
the default, but we will switch entirely to the ray stream mode in a later release.

The user is supposed to include the embree2/rtcore.h, and the embree2/
rtcore_ray.h file, but none of the other header files. If using the ISPC version of
the API, the user should include embree2/rtcore.isph and embree2/rtcore_
ray.isph.
#include <embree2/rtcore.h>
#include <embree2/rtcore_ray.h>

All API calls carry the prefix rtc which stands for ray tracing core. Embree
supports a device concept, which allows different components of the application
to use the API without interfering with each other. You have to create at least
one Embree device through the rtcNewDevice call. Before the application ex-
its it should delete all devices by invoking rtcDeleteDevice. An application
typically creates a single device only, and should create only a small number of
devices.
RTCDevice device = rtcNewDevice(NULL);
...
rtcDeleteDevice(device);

It is strongly recommended to have the Flush to Zero and Denormals are
Zeromode of the MXCSR control and status register enabled for each thread be-
fore calling the rtcIntersect and rtcOccluded functions. Otherwise, under

Embree API 21

some circumstances special handling of denormalized floating point numbers
can significantly reduce application and Embree performance. When using Em-
bree together with the Intel® Threading Building Blocks, it is sufficient to execute
the following code at the beginning of the application main thread (before the
creation of the tbb::task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

Embree processes some implementation specific configuration from the fol-
lowing locations in the specified order:

1) configuration string passed to the rtcNewDevice function
2) .embree2 file in the application folder
3) .embree2 file in the home folder

Settings performed later overwrite previous settings. This way the configura-
tion for the application can be changed globally (either through the rtcNewDe-
vice call or through the .embree2 file in the application folder) and each user
has the option to modify the configuration to fit its needs. Configuration files
can be ignored by the application by passing ignore_config_files=1 to rtc-
NewDevice.

API calls that access geometries are only thread safe as long as different ge-
ometries are accessed. Accesses to one geometry have to get sequenced by the
application. All other API calls are thread safe. The API calls are re-entrant, it
is thus safe to trace new rays and create new geometry when intersecting a user
defined object.

Each user thread has its own error flag per device. If an error occurs when
invoking someAPI function, this flag is set to an error code if it stores no previous
error. The rtcDeviceGetError function reads and returns the currently stored
error and clears the error flag again.

Possible error codes returned by rtcDeviceGetError are:

Table 4.1 – Return values of rtcDeviceGetError.

Error Code Description

RTC_NO_ERROR No error occurred.
RTC_UNKNOWN_ERROR An unknown error has occurred.
RTC_INVALID_ARGUMENT An invalid argument was specified.
RTC_INVALID_OPERATION The operation is not allowed for the specified object.
RTC_OUT_OF_MEMORY There is not enough memory left to complete the operation.
RTC_UNSUPPORTED_CPU The CPU is not supported as it does not support SSE2.
RTC_CANCELLED The operation got cancelled by an Memory Monitor Callback or Progress Monitor

Callback function.

When the device construction fails rtcNewDevice returns NULL as device.
To detect the error code of a such a failed device construction pass NULL as de-
vice to the rtcDeviceGetError function. For all other invokations of rtcDe-
viceGetError a proper device pointer has to get specified.

Using the rtcDeviceSetErrorFunction call, it is also possible to set a call-
back function that is called whenever an error occurs for a device. The callback

Embree API 22

function gets passed the error code, as well as some string that describes the
error further. Passing NULL to rtcDeviceSetErrorFunction disables the set
callback function again. The previously described error flags are also set if an
error callback function is present.

4.1 Scene
A scene is a container for a set of geometries of potentially different types. A
scene is created using the rtcDeviceNewScene function call, and destroyed us-
ing the rtcDeleteScene function call. Two types of scenes are supported, dy-
namic and static scenes. Different flags specify the type of scene to create and
the type of ray query operations that can later be performed on the scene. The
following example creates a scene that supports dynamic updates and the single
ray rtcIntersect and rtcOccluded calls.

RTCScene scene = rtcDeviceNewScene(device, RTC_SCENE_DYNAMIC, RTC_INTERSECT1);
...
rtcDeleteScene(scene);

Using the following scene flags the user can select between creating a static
or dynamic scene.

Scene Flag Description

RTC_SCENE_STATIC Scene is optimized for static geometry.
RTC_SCENE_DYNAMIC Scene is optimized for dynamic geometry.

Table 4.2 – Dynamic type flags for
rtcDeviceNewScene.

A dynamic scene is created by invoking rtcDeviceNewScene with the RTC_
SCENE_DYNAMIC flag. Different geometries can now be created inside that scene.
Geometries are enabled by default. Once the scene geometry is specified, an
rtcCommit call will finish the scene description and trigger building of internal
data structures. After the rtcCommit call it is safe to perform ray queries of the
type specified at scene construction time. Geometries can get disabled (rtcDis-
able call), enabled again (rtcEnable call), and deleted (rtcDeleteGeometry
call). Geometries can also get modified, including their vertex and index arrays.
After the modification of some geometry, rtcUpdate or rtcUpdateBuffer has
to get called for that geometry to specify which buffers got modified. Each mod-
ified buffer can be specified separately using the rtcUpdateBuffer function. In
contrast the rtcUpdate function simply tags each buffer of some geometry as
modified. If geometries got enabled, disabled, deleted, or modified an rtcCommit
call has to get invoked before performing any ray queries for the scene, otherwise
the effect of the ray query is undefined. During an rtcCommit call modifications
to the scene are not allowed.

A static scene is created by the rtcDeviceNewScene call with the RTC_
SCENE_STATIC flag. Geometries can only get created, enabled, disabled and
modified until the first rtcCommit call. After the rtcCommit call, each access to
any geometry of that static scene is invalid. Geometries that got created inside
a static scene can only get deleted by deleting the entire scene.

The modification of geometry, building of hierarchies using rtcCommit, and
tracing of rays have always to happen separately, never at the same time.

Embree silently ignores primitives thatwould cause numerical issues, e.g. prim-
itives containing NaNs, INFs, or values greater than 1.844E18f.

The following flags can be used to tune the used acceleration structure. These
flags are only hints and may be ignored by the implementation.

The following flags can be used to tune the traversal algorithm that is used by
Embree. These flags are only hints and may be ignored by the implementation.

Embree API 23

Table 4.3 – Acceleration structure flags for rtcDeviceNewScene.

Scene Flag Description

RTC_SCENE_COMPACT Creates a compact data structure and avoids algorithms that consume much
memory.

RTC_SCENE_COHERENT Optimize for coherent rays (e.g. primary rays).
RTC_SCENE_INCOHERENT Optimize for in-coherent rays (e.g. diffuse reflection rays).
RTC_SCENE_HIGH_QUALITY Build higher quality spatial data structures.

Scene Flag Description

RTC_SCENE_ROBUST Avoid optimizations that reduce arithmetic
accuracy.

Table 4.4 – Traversal algorithm flags for
rtcDeviceNewScene.

The second argument of the rtcDeviceNewScene function are algorithm
flags, that allow to specify which ray queries are required by the application.
Calling a ray query API function for a scene that is different to the ones speci-
fied at scene creation time is not allowed. Further, the application should only
pass ray query requirements that are really needed, to give Embree most free-
dom in choosing the best algorithm. E.g. in case Embree implements no packet
traversers for some highly optimized data structure for single rays, then this data
structure cannot be used if the user enables any ray packet query.

Table 4.5 – Enabled algorithm flags for rtcDeviceNewScene.

Algorithm Flag Description

RTC_INTERSECT1 Enables the rtcIntersect and rtcOccluded functions (single ray interface) for this
scene.

RTC_INTERSECT4 Enables the rtcIntersect4 and rtcOccluded4 functions (4-wide packet interface)
for this scene.

RTC_INTERSECT8 Enables the rtcIntersect8 and rtcOccluded8 functions (8-wide packet interface)
for this scene.

RTC_INTERSECT16 Enables the rtcIntersect16 and rtcOccluded16 functions (16-wide packet
interface) for this scene.

RTC_INTERSECT_STREAM Enables the rtcIntersect1M, rtcOccluded1M, rtcIntersect1Mp,
rtcOccluded1Mp, rtcIntersectNM, rtcOccludedNM, rtcIntersectNp, and
rtcOccludedNp functions for this scene.

RTC_INTERPOLATE Enables the rtcInterpolate and rtcInterpolateN interpolation functions.

Embree supports two modes for a scene, the normal mode and stream mode.
These modes mainly differ in the kind of callbacks invoked and how rays are ex-
tended with user data. The normal mode is enabled by default, the ray stream
mode can be enabled using the RTC_INTERSECT_STREAM algorithm flag for a
scene. Only in ray stream mode, the stream API functions rtcIntersect1M,
rtcIntersect1Mp, rtcIntersectNM, and rtcIntersectNp as well as their oc-
clusion variants can be used.

The scene bounding box can get read by the function rtcGetBounds(RTCScene
scene, RTCBounds& bounds_o). This function will write the AABB of the
scene to bounds_o. Time varying bounds can be obtained usin the rtcGetLin-
earBounds(RTCScene scene, RTCBounds* bounds_o) function. This func-
tion will write two AABBs to bounds_o. Linearly interpolating these bounds

Embree API 24

to a specific time t yields bounds that bound the geometry at that time. Invok-
ing these functions is only valid when all scene changes got committed using
rtcCommit.

4.2 Geometries
Geometries are always contained in the scene they are created in. Each geometry
is assigned an integer ID at creation time, which is unique for that scene. The cur-
rent version of the API supports triangle meshes (rtcNewTriangleMesh), quad
meshes (rtcNewQuadMesh), Catmull-Clark subdivision surfaces (rtcNewSubdi-
visionMesh), curve geometries (rtcNewCurveGeometry), hair geometries (rtc-
NewHairGeometry), single level instances of other scenes (rtcNewInstance2),
and user defined geometries (rtcNewUserGeometry). The API is designed in a
way that easily allows adding new geometry types in later releases.

For dynamic scenes, the assigned geometry IDs fulfill the following proper-
ties. As long as no geometry got deleted, all IDs are assigned sequentially, start-
ing from 0. If geometries got deleted, the implementation will reuse IDs later on
in an implementation dependent way. Consequently sequential assignment is
no longer guaranteed, but a compact range of IDs. These rules allow the applica-
tion to manage a dynamic array to efficiently map from geometry IDs to its own
geometry representation.

For static scenes, geometry IDs are assigned sequentially starting at 0. This
allows the application to use a fixed size array to map from geometry IDs to its
own geometry representation.

Alternatively the application can also use the void rtcSetUserData (RTC-
Scene scene, unsigned geomID, void* ptr) function to set a user data
pointer ptr to its own geometry representation, and later read out this pointer
again using the void* rtcGetUserData (RTCScene scene, unsigned geo-
mID) function.

The following geometry flags can be specified at construction time of geome-
tries:

Table 4.6 – Flags for the creation of new geometries.

Geometry Flag Description

RTC_GEOMETRY_STATIC The geometry is considered static and should get modified rarely by the
application. This flag has to get used in static scenes.

RTC_GEOMETRY_DEFORMABLE The geometry is considered to deform in a coherent way, e.g. a skinned
character. The connectivity of the geometry has to stay constant, thus
modifying the index array is not allowed. The implementation is free to choose
a BVH refitting approach for handling meshes tagged with that flag.

RTC_GEOMETRY_DYNAMIC The geometry is considered highly dynamic and changes frequently, possibly
in an unstructured way. Embree will rebuild data structures from scratch for
this type of geometry.

4.2.1 Triangle Meshes
Triangle meshes are created using the rtcNewTriangleMesh function call, and
potentially deleted using the rtcDeleteGeometry function call.

The number of triangles, number of vertices, and optionally the number of
time steps for multi-segment motion blur have to get specified at construction
time of the mesh. The user can also specify additional flags that choose the strat-

Embree API 25

egy to handle that mesh in dynamic scenes. The following example demonstrates
how to create a triangle mesh without motion blur:

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags,
numTriangles, numVertices, 1);

The triangle indices can be set by mapping and writing to the index buffer
(RTC_INDEX_BUFFER) and the triangle vertices can be set bymapping andwriting
into the vertex buffer (RTC_VERTEX_BUFFER). The index buffer contains an array
of three 32 bit indices, while the vertex buffer contains an array of three float
values aligned to 16 bytes. The 4th component of the aligned vertices can be
arbitrary. All buffers have to get unmapped before an rtcCommit call to the
scene.

struct Vertex { float x, y, z, a; };
struct Triangle { int v0, v1, v2; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

Triangle* triangles = (Triangle*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill triangle indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Also see tutorial Triangle Geometry for an example of how to create triangle
meshes.

The parametrization of a triangle uses the first vertex p0 as base point, and the
vector p1 - p0 as u-direction and p2 - p0 as v-direction. The following picture
additionally illustrates the direction the geometry normal is pointing into.

Ng

p0

p2

p1

u

v Figure 4.1

Some texture coordinates t0,t1,t2 can be linearly interpolated over the tri-
angle the following way:

t_uv = (1-u-v)*t0 + u*t1 + v*t2

4.2.2 Quad Meshes
Quad meshes are created using the rtcNewQuadMesh function call, and poten-
tially deleted using the rtcDeleteGeometry function call.

The number of quads, number of vertices, and optionally the number of time
steps for multi-segment motion blur have to get specified at construction time of
the mesh. The user can also specify additional flags that choose the strategy to
handle that mesh in dynamic scenes. The following example demonstrates how
to create a quad mesh without motion blur:

unsigned geomID = rtcNewQuadMesh(scene, geomFlags,
numQuads, numVertices, 1);

Embree API 26

The quad indices can be set by mapping and writing to the index buffer (RTC_
INDEX_BUFFER) and the quad vertices can be set by mapping and writing into the
vertex buffer (RTC_VERTEX_BUFFER). The index buffer contains an array of four
32 bit indices, while the vertex buffer contains an array of three float values
aligned to 16 bytes. The 4th component of the aligned vertices can be arbitrary.
All buffers have to get unmapped before an rtcCommit call to the scene.

struct Vertex { float x, y, z, a; };
struct Quad { int v0, v1, v2, v3; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

Quad* quads = (Quad*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill quad indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Aquad is internally handled as a pair of two triangles v0,v1,v3 and v2,v3,v1,
with the u’/v’ coordinates of the second triangle corrected by u = 1-u' and v =
1-v' to produce a quad parametrization where u and v go from 0 to 1.

To encode a triangle as a quad just replicate the last triangle vertex (v0,v1,v2
-> v0,v1,v2,v2). This way the quadmesh can be used to represent amixedmesh
which contains triangles and quads.

4.2.3 Subdivision Surfaces
Catmull-Clark subdivision surfaces for meshes consisting of faces of up to 15
vertices (e.g. triangles, quadrilateral, pentagons, etc.) are supported, including
support for edge creases, vertex creases, holes, non-manifold geometry, and face-
varying interpolation.

A subdivision surface is created using the rtcNewSubdivisionMesh function
call, and deleted again using the rtcDeleteGeometry function call.

unsigned rtcNewSubdivisionMesh(RTCScene scene,
RTCGeometryFlags flags,
size_t numFaces,
size_t numEdges,
size_t numVertices,
size_t numEdgeCreases,
size_t numVertexCreases,
size_t numCorners,
size_t numHoles,
size_t numTimeSteps);

The number of faces (numFaces), edges/indices (numEdges), vertices (numVer-
tices), edge creases (numEdgeCreases), vertex creases (numVertexCreases),
holes (numHoles), and time steps (numTimeSteps) have to get specified at con-
struction time.

The following buffers have to get setup by the application: the face buffer
(RTC_FACE_BUFFER) contains the number edges/indices (3 to 15) of each of the
numFaces faces, the index buffer (RTC_INDEX_BUFFER) contains multiple (3 to
15) 32 bit vertex indices for each face and numEdges indices in total, the vertex
buffer (RTC_VERTEX_BUFFER) stores numVertices vertices as single precision x,
y, z floating point coordinates aligned to 16 bytes. The value of the 4th float used
for alignment can be arbitrary.

Optionally the application may fill additional index buffers if multiple topolo-
gies are required for face-varying interpolation. The standard vertex buffers

Embree API 27

RTC_VERTEX_BUFFER are always bound to the geometry topology (topology 0)
thus use RTC_INDEX_BUFFER0. Data interpolation may use different topologies
as described later.

Optionally, the application can setup the hole buffer (RTC_HOLE_BUFFER)
with numHoles many 32 bit indices of faces that should be considered non-
existing in all topologies.

Optionally, the application can fill the level buffer (RTC_LEVEL_BUFFER) with
a tessellation rate for each or the edges of each face, making a total of numEdges
values. The tessellation level is a positive floating point value, that specifies how
many quads along the edge should get generated during tessellation. The tessel-
lation level is a lower bound, thus the implementation is free to choose a larger
level. If no level buffer is specified a level of 1 is used. Note that some edge may
be shared between (typically 2) faces. To guarantee a watertight tessellation, the
level of these shared edges has to be exactly identical. A uniform tessellation
rate for an entire subdivision mesh can be set by using the rtcSetTessella-
tionRate(RTCScene scene, unsigned geomID, float rate) function. The
existance of a level buffer has preference over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to make
some edges appear sharper. The edge crease index buffer (RTC_EDGE_CREASE_
INDEX_BUFFER) contains numEdgeCreases many pairs of 32 bit vertex indices
that specify unoriented edges in the geometry topology. The edge crease weight
buffer (RTC_EDGE_CREASE_WEIGHT_BUFFER) stores for each of theses crease
edges a positive floating point weight. The larger this weight, the sharper the
edge. Specifying a weight of infinity is supported and marks an edge as infinitely
sharp. Storing an edge multiple times with the same crease weight is allowed,
but has lower performance. Storing an edge multiple times with different crease
weights results in undefined behavior. For a stored edge (i,j), the reverse direc-
tion edges (j,i) does not have to get stored, as both are considered the same edge.
Edge crease features are specified for the geomtetry topology, but copied to all
other topologies automatically.

Optionally, the application can fill the sparse vertex crease buffers to make
some vertices appear sharper. The vertex crease index buffer (RTC_VERTEX_
CREASE_INDEX_BUFFER), contains numVertexCreases many 32 bit vertex in-
dices to specify a set of vertices from the geometry topology. The vertex crease
weight buffer (RTC_VERTEX_CREASE_WEIGHT_BUFFER) specifies for each of these
vertices a positive floating point weight. The larger this weight, the sharper the
vertex. Specifying a weight of infinity is supported and makes the vertex in-
finitely sharp. Storing a vertex multiple times with the same crease weight is
allowed, but has lower performance. Storing a vertex multiple times with dif-
ferent crease weights results in undefined behavior. Vertex crease features are
specified for the geomtetry topology, but copied to all other topologies automat-
ically.

Faces with 3 to 15 vertices are supported (triangles, quadrilateral, pentagons,
etc).

The user can also specify a geometry mask and additional flags that choose
the strategy to handle that subdivision mesh in dynamic scenes.

The implementation of subdivision surfaces uses an internal software cache,
which can get configured to some desired size (see Configuring Embree).

4.2.3.1 Parametrization

The parametrization of a regular quadrilateral uses the first vertex p0 as base
point, and the vector p1 - p0 as u-direction and p3 - p0 as v-direction. The
following picture additionally illustrates the direction the geometry normal is
pointing into.

Some texture coordinates t0,t1,t2,t3 can be bi-linearly interpolated over

Embree API 28

Ng

p0

u

v

p3

p2

p1

Figure 4.2

the quadrilateral the following way:

t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

The parametrization for all other face types where the number of vertices is
not equal to 4, have a special parametrization where the n’th quadrilateral (that
would be obtained by a single subdivision step) is encoded in the higher order
bits of the UV coordinates and the local hit location inside this quadrilateral in
the lower order bits. The following piece of code extracts the sub-patch ID i and
UVs of this subpatch:

const unsigned l = floorf(4.0f*U);
const unsigned h = floorf(4.0f*V);
const unsigned i = 4*h+l;
const float u = 2.0f*fracf(4.0f*U);
const float v = 2.0f*fracf(4.0f*V);

To smoothly interpolate texture coordinates over the subdivision surface we
recommend using the rtcInterpolate2 function, which will apply the standard
subdivision rules for interpolation and automatically take care of the special UV
encoding for non-quadrilaterals.

4.2.3.2 Face-Varing Data

Face-varying interpolation is supported through multiple topologies per subdivi-
sion mesh and binding such topologies to user vertex buffers to interpolate. This
way texture coordinates may use a different topology with additional boundaries
to construct separate UV regions inside one subdivision mesh.

Each such topology consists of an index buffer and subdivision mode. Up
to 16 topologies are supported, with corresponding index buffers RTC_INDEX_
BUFFER0+i, with i in the range 0 to 15.

Each of the 16 supported user vertex buffers RTC_USER_VERTEX_BUFFER0+j
(j in the range 0 to 15) can be assigned to some topology using the rtcSetIndexBuffer
call:

void rtcSetIndexBuffer(RTCScene scene, unsigned geomID,
RTCBufferType vertexBuffer, RTCBufferType indexBuffer);

The face buffer (RTC_FACE_BUFFER) is shared between all topologies, which
means that the n’th primitive always has the same number of vertices (e.g. being
a triangle or a quad) for each topology. However, the indices of the topologies
themselves may be different.

4.2.3.3 Subdivision Mode

The subdivision modes can be used to force linear interpolation for some parts
of the subdivision mesh.

These modes can be set to each topology separately using the rtcSetSub-
divisionMode API call with the following signature:

Embree API 29

Table 4.7 – Subdivision modes supported by Embree.

Boundary Mode Description

RTC_SUBDIV_NO_BOUNDARY Boundary patches are ignored. This way each rendered patch has a full set
of control vertices.

RTC_SUBDIV_SMOOTH_BOUNDARY The sequence of boundary control points are used to generate a smooth
B-spline boundary curve (default mode).

RTC_SUBDIV_PIN_CORNERS Corner vertices are pinned to their location during subdivision.
RTC_SUBDIV_PIN_BOUNDARY All vertices at the border are pinned to their location during subdivision.

This way the boundary is interpolated linearly.
RTC_SUBDIV_PIN_ALL All vertices at the border are binned to their location during subdivision.

This way all patches are linearly interpolated.

void rtcSetSubdivisionMode(RTCScene scene, unsigned geomID,
unsigned topologyID, RTCSubdivisionMode mode);

These modes are typically used to interpolate face-varying data properly. E.g.
the topology used to interpolate texture coordinaces are typically assigned the
RTC_SUBDIV_PIN_BOUNDARYmode, to alsomap texels at the border of the texture
to the mesh.

Also see tutorial Subdivision Geometry for an example of how to create sub-
division surfaces.

4.2.4 Line Segment Hair Geometry
Line segments are supported to render hair geometry. A line segment consists
of a start and end point, and start and end radius. Individual line segments are
considered to be subpixel sized which allows the implementation to approximate
the intersection calculation. This in particular means that zooming onto one line
segment might show geometric artifacts.

Line segments are created using the rtcNewLineSegments function call, and
potentially deleted using the rtcDeleteGeometry function call.

The number of line segments, the number of vertices, and optionally the num-
ber of time steps for multi-segment motion blur have to get specified at construc-
tion time of the line segment geometry.

The segment indices can be set by mapping and writing to the index buffer
(RTC_INDEX_BUFFER) and the vertices can be set bymapping andwriting into the
vertex buffer (RTC_VERTEX_BUFFER). In case of motion blur, the vertex buffers
(RTC_VERTEX_BUFFER0+t) have to get filled for each time step t.

The index buffer contains an array of 32 bit indices pointing to the ID of the
first of two vertices, while the vertex buffer stores all control points in the form
of a single precision position and radius stored in x, y, z, r order in memory. The
radii have to be greater or equal zero. All buffers have to get unmapped before
an rtcCommit call to the scene.

Like for triangle meshes, the user can also specify a geometry mask and ad-
ditional flags that choose the strategy to handle that mesh in dynamic scenes.

The following example demonstrates how to create some line segment geom-
etry:

unsigned geomID = rtcNewLineSegments(scene, geomFlags, numCurves,
numVertices, 1);

struct Vertex { float x, y, z, r; };

Embree API 30

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

int* curves = (int*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

4.2.5 Bézier Hair Geometry
Hair geometries are supported, which consist of multiple hairs represented as
cubic Bézier curves with varying radius per control point. Individual hairs are
considered to be subpixel sized which allows the implementation to approximate
the intersection calculation. This in particular means that zooming onto one hair
might show geometric artifacts.

Hair geometries are created using the rtcNewHairGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call.

The number of hair curves, the number of vertices, and optionally the number
of time steps for multi-segment motion blur have to get specified at construction
time of the hair geometry.

The curve indices can be set bymapping andwriting to the index buffer (RTC_
INDEX_BUFFER) and the control vertices can be set by mapping and writing into
the vertex buffer (RTC_VERTEX_BUFFER). In case ofmotion blur, the vertex buffers
RTC_VERTEX_BUFFER0+t have to get filled for each time step.

The index buffer contains an array of 32 bit indices pointing to the ID of the
first of four control vertices, while the vertex buffer stores all control points in
the form of a single precision position and radius stored in x, y, z, r order in
memory. The hair radii have to be greater or equal zero. All buffers have to get
unmapped before an rtcCommit call to the scene.

The intersection with the hair primitive stores the parametric hit location
along the hair as u-coordinate (range 0 to +1), and the normalized distance as
the v-coordinate (range -1 to +1). The geometry normal Ng is filled with the the
tangent of the bezier curve at the hit location on the curve (dPdu).

The implementation may choose to subdivide the Bézier curve into multi-
ple cylinders-like primitives. The number of cylinders the curve gets subdi-
vided into can be specified per hair geometry through the rtcSetTessella-
tionRate(RTCScene scene, unsigned geomID, float rate) function. By
default the tessellation rate for hair curves is 4.

Like for triangle meshes, the user can also specify a geometry mask and ad-
ditional flags that choose the strategy to handle that mesh in dynamic scenes.

The following example demonstrates how to create some hair geometry:

unsigned geomID = rtcNewHairGeometry(scene, geomFlags, numCurves, numVertices);

struct Vertex { float x, y, z, r; };

Vertex* vertices = (Vertex*) rtcMapBuffer(scene, geomID, RTC_VERTEX_BUFFER);
// fill vertices here
rtcUnmapBuffer(scene, geomID, RTC_VERTEX_BUFFER);

int* curves = (int*) rtcMapBuffer(scene, geomID, RTC_INDEX_BUFFER);
// fill indices here
rtcUnmapBuffer(scene, geomID, RTC_INDEX_BUFFER);

Also see tutorial Hair for an example of how to create and use hair geometry.

Embree API 31

4.2.6 Bézier Curve Geometry
The Bézier curve geometry consists of multiple cubic Bézier curves with vary-
ing radius per control point. The cuve surface is defined as the sweep surface
of sweeping a varying radius circle tangential along the Bézier curve. As a lim-
itation, the radius of the curve has to be smaller than the curvature radius of
the Bézier curve at each location on the curve. In contrast to hair geometry, the
curve geometry is rendered properly even in closeups.

Curve geometries are created using the rtcNewCurveGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call.

The number of Bézier curves, the number of vertices, and optionally the num-
ber of time steps for multi-segment motion blur have to get specified at construc-
tion time of the curve geometry.

The curve indices can be set bymapping andwriting to the index buffer (RTC_
INDEX_BUFFER) and the control vertices can be set by mapping and writing into
the vertex buffer (RTC_VERTEX_BUFFER). In case ofmotion blur, the vertex buffers
RTC_VERTEX_BUFFER0+t have to get filled for each time step.

The index buffer contains an array of 32 bit indices pointing to the ID of the
first of four control vertices, while the vertex buffer stores all control points in
the form of a single precision position and radius stored in x, y, z, r order in
memory. The curve radii have to be greater or equal zero. All buffers have to get
unmapped before an rtcCommit call to the scene.

Like for triangle meshes, the user can also specify a geometry mask and ad-
ditional flags that choose the strategy to handle the curves in dynamic scenes.

Also see tutorial Curves for an example of how to create and use Bézier curve
geometries.

4.2.7 User Defined Geometry
User defined geometries make it possible to extend Embree with arbitrary types
of user defined primitives. This is achieved by introducing arrays of user primi-
tives as a special geometry type.

User geometries are created using the rtcNewUserGeometry function call,
and potentially deleted using the rtcDeleteGeometry function call. The the
rtcNewUserGeometry2 function additionally gets a numTimeSteps parameter,
which specifies the number of timesteps for multi-segment motion blur.

When creating a user defined geometry, the user has to set a data pointer,
a bounding function closure (function and user pointer) as well as user defined
intersect and occluded callback function pointers. The bounding function is used
to query the bounds of all timesteps of a user primitive, while the intersect and
occluded callback functions are called to intersect the primitive with a ray.

The bounding function to register has the following signature

typedef void (*RTCBoundsFunc3)(void* userPtr, void* geomUserPtr, size_t id, size_t timeStep, RTCBounds& bounds_o);

and can be registered using the rtcSetBoundsFunction2 API function:

rtcSetBoundsFunction3(scene, geomID, userBoundsFunction, userPtr);

When the bounding callback is called, it is passed a user defined pointer spec-
ified at registration time of the bounds function (userPtr parameter), the per
geometry user data pointer (geomUserPtr parameter), the ID of the primitive
to calculate the bounds for (id parameter), the time step at which to calculate
the bounds (timeStep parameter) and a memory location to write the calculated
bound to (bounds_o parameter).

The signature of supported user defined intersect and occluded function in
normal mode is as follows:

Embree API 32

typedef void (*RTCIntersectFunc) (void* userDataPtr, RTCRay& ray, size_t item);
typedef void (*RTCIntersectFunc4) (const void* valid, void* userDataPtr, RTCRay4& ray, size_t item);
typedef void (*RTCIntersectFunc8) (const void* valid, void* userDataPtr, RTCRay8& ray, size_t item);
typedef void (*RTCIntersectFunc16) (const void* valid, void* userDataPtr, RTCRay16& ray, size_t item);

The RTCIntersectFunc callback function operates on single rays and gets
passed the user data pointer of the user geometry (userDataPtr parameter), the
ray to intersect (ray parameter), and the ID of the primitive to intersect (item
parameter). The RTCIntersectFunc4/8/16 callback functions operate on ray
packets of size 4, 8 and 16 and additionally get an integer valid mask as input
(valid parameter). The callback functions should not modify any ray that is
disabled by that valid mask.

In stream mode the following callback function has to get used:

typedef void (*RTCIntersectFuncN) (const int* valid, void* userDataPtr, const RTCIntersectContext* context, RTCRayN* rays, size_t N, size_t item);
typedef void (*RTCIntersectFunc1Mp)(void* userDataPtr, const RTCIntersectContext* context, RTCRay** rays, size_t M, size_t item);

The RTCIntersectFuncN callback function supports ray packets of arbitrary
size N. The RTCIntersectFunc1Mp callback function get an array of M pointers
to single rays as input.

The user intersect function should return without modifying the ray struc-
ture if the user geometry is missed. Whereas, if an intersection of the user primi-
tive with the ray segment was found, the intersect function has to update the hit
information of the ray (tfar, u, v, Ng, geomID, primID components).

The user occluded function should also return without modifying the ray
structure if the user geometry is missed. If the geometry is hit, it should set the
geomID member of the ray to 0.

When performing ray queries using the rtcIntersect and rtcOccluded
function, callbacks of type RTCIntersectFunc are invoked for user geometries.
Consequently, an application only operating on single rays only has to provide
the single ray intersect and occluded callbacks. Similar when calling the rtcIn-
tersect4/8/16 and rtcOccluded4/8/16 functions, the RTCIntersectFunc4/
8/16 callbacks of matching packet size and type are called.

If ray streammode is enabled for the scene only the RTCIntersectFuncN and
RTCIntersectFunc1Mp callback can be used. In this case specifying an RTCIn-
tersectFuncN callback is mandatory and the RTCIntersectFunc1Mp callback
is optional. Trying to set a different type of user callback function results in an
error.

The following example illustrates creating an array with two user geometries:

int numTimeSteps = 2;
struct UserObject { ... };

void userBoundsFunction(void* userPtr, UserObject* userGeomPtr, size_t i, size_t t, RTCBounds& bounds)
{

bounds = <bounds of userGeomPtr[i] at time t>;
}

void userIntersectFunction(UserObject* userGeomPtr, RTCRay& ray, size_t i)
{
if (<ray misses userGeomPtr[i] at time ray.time>)

return;
<update ray hit information>;

}

void userOccludedFunction(UserObject* userGeomPtr, RTCRay& ray, size_t i)
{

Embree API 33

if (<ray misses userGeomPtr[i] at time ray.time>)
return;

geomID = 0;
}

...

UserObject* userGeomPtr = new UserObject[2];
userGeomPtr[0] = ...
userGeomPtr[1] = ...
unsigned geomID = rtcNewUserGeometry2(scene, 2, numTimeSteps);
rtcSetUserData(scene, geomID, userGeomPtr);
rtcSetBoundsFunction3(scene, geomID, userBoundsFunction, userPtr);
rtcSetIntersectFunction(scene, geomID, userIntersectFunction);
rtcSetOccludedFunction(scene, geomID, userOccludedFunction);

See tutorial User Geometry for an example of how to use the user defined
geometries.

4.2.8 Instances
Embree supports instancing of scenes inside another scene by some transforma-
tion. As the instanced scene is stored only a single time, even if instanced to
multiple locations, this feature can be used to create very large scenes. Only
single level instancing is supported by Embree natively, however, multi-level in-
stancing can be implemented through user geometries.

Instances are created using the rtcNewInstance2 (RTCScene target,
RTCScene source, size_t numTimeSteps) function call, and potentially deleted
using the rtcDeleteGeometry function call. To instantiate a scene, one first has
to generate the scene B to instantiate. Now one can add an instance of this scene
inside a scene A the following way:

unsigned instID = rtcNewInstance2(sceneA, sceneB, 1);
rtcSetTransform2(sceneA, instID, RTC_MATRIX_COLUMN_MAJOR, &column_matrix_3x4, 0);

To create some motion blurred instance just pass the number of time steps
and specify one matrix for each time step:

unsigned instID = rtcNewInstance2(sceneA, sceneB, 3);
rtcSetTransform2(sceneA, instID, RTC_MATRIX_COLUMN_MAJOR, &column_matrix_t0_3x4, 0);
rtcSetTransform2(sceneA, instID, RTC_MATRIX_COLUMN_MAJOR, &column_matrix_t1_3x4, 1);
rtcSetTransform2(sceneA, instID, RTC_MATRIX_COLUMN_MAJOR, &column_matrix_t2_3x4, 2);

Both scenes have to belong to the same device. One has to call rtcCommit
on scene B before one calls rtcCommit on scene A. When modifying scene B one
has to call rtcUpdate for all instances of that scene. If a ray hits the instance,
then the geomID and primID members of the ray are set to the geometry ID and
primitive ID of the primitive hit in scene B, and the instIDmember of the ray is
set to the instance ID returned from the rtcNewInstance2 function.

Some special care has to be taken when using user geometries and instances
in the same scene. Instantiated user geometries should not set the instID field
of the ray as this field is managed by the instancing already. However, non-
instantiated user geometries should clear the instID field to RTC_INVALID_GE-
OMETRY_ID, to later distinguish them from instantiated geometries that have the
instID field set.

The rtcSetTransform2 call can be passed an affine transformation matrix
with different data layouts:

Embree API 34

Table 4.8 –Matrix layouts for rtcSetTransform2.

Layout Description

RTC_MATRIX_ROW_MAJOR The 3×4 float matrix is laid out in row major form.
RTC_MATRIX_COLUMN_MAJOR The 3×4 float matrix is laid out in column major form.
RTC_MATRIX_COLUMN_MAJOR_ALIGNED16 The 3×4 float matrix is laid out in column major form, with each

column padded by an additional 4th component.

Passing homogeneous 4×4 matrices is possible as long as the last row is (0, 0,
0, 1). If this homogeneous matrix is laid out in row major form, use the RTC_MA-
TRIX_ROW_MAJOR layout. If this homogeneous matrix is laid out in columnmajor
form, use the RTC_MATRIX_COLUMN_MAJOR_ALIGNED16mode. In both cases, Em-
bree will ignore the last row of the matrix.

The transformation passed to rtcSetTransform2 transforms from the local
space of the instantiated scene to world space.

See tutorial Instanced Geometry for an example of how to use instances.

4.3 Ray Layout
The ray layout to be passed to the ray tracing core is defined in the embree2/
rtcore_ray.h header file. It is up to the user to use the ray structures defined
in that file, or resemble the exact same binary data layout with their own vector
classes. The ray layout might change with new Embree releases as new features
get added, however, will stay constant as long as the major Embree release num-
ber does not change. The ray contains the following data members:

Member In/Out Description

org in ray origin
dir in ray direction (can be unnormalized)
tnear in start of ray segment
tfar in/out end of ray segment, set to hit distance after intersection
time in time used for multi-segment motion blur [0,1]
mask in ray mask to mask out geometries
Ng out unnormalized geometry normal
u out barycentric u-coordinate of hit
v out barycentric v-coordinate of hit
geomID out geometry ID of hit geometry
primID out primitive ID of hit primitive
instID out instance ID of hit instance

Table 4.9 – Data fields of a ray.

This structure is in struct of array layout (SOA) for API functions accepting
ray packets.

To create a single ray you can use the RTCRay ray type defined in embree2/
rtcore_ray.h. To generate a ray packet of size 4, 8, or 16 you can use the
RTCRay4, RTCRay8, or RTCRay16 types. Alternatively you can also use the
RTCRayNt template to generate ray packets of an arbitrary compile time known
size.

When the ray packet size is not known at compile time (e.g. when Embree
returns a ray packet in the RTCFilterFuncN callback function), then you can

Embree API 35

use the helper functions defined in embree2/rtcore_ray.h to access ray packet
components:

float& RTCRayN_org_x(RTCRayN* rays, size_t N, size_t i);
float& RTCRayN_org_y(RTCRayN* rays, size_t N, size_t i);
float& RTCRayN_org_z(RTCRayN* rays, size_t N, size_t i);

float& RTCRayN_dir_x(RTCRayN* rays, size_t N, size_t i);
float& RTCRayN_dir_y(RTCRayN* rays, size_t N, size_t i);
float& RTCRayN_dir_z(RTCRayN* rays, size_t N, size_t i);

float& RTCRayN_tnear(RTCRayN* rays, size_t N, size_t i);
float& RTCRayN_tnear(RTCRayN* rays, size_t N, size_t i);

float& RTCRayN_time(RTCRayN* ptr, size_t N, size_t i);
unsigned& RTCRayN_mask(RTCRayN* ptr, size_t N, size_t i);

float& RTCRayN_Ng_x(RTCRayN* ptr, size_t N, size_t i);
float& RTCRayN_Ng_y(RTCRayN* ptr, size_t N, size_t i);
float& RTCRayN_Ng_z(RTCRayN* ptr, size_t N, size_t i);

float& RTCRayN_u (RTCRayN* ptr, size_t N, size_t i);
float& RTCRayN_v (RTCRayN* ptr, size_t N, size_t i);

unsigned& RTCRayN_instID(RTCRayN* ptr, size_t N, size_t i);
unsigned& RTCRayN_geomID(RTCRayN* ptr, size_t N, size_t i);
unsigned& RTCRayN_primID(RTCRayN* ptr, size_t N, size_t i);

These helper functions get a pointer to the ray packet (rays parameter), the
packet size N, and returns a reference to some component (e.g. x-component of
origin) of the the ith ray of the packet.

Please note that there is some incompatibility in the layout of a single ray
(RTCRay type) and a ray packet of size 1 (RTCRayNt<1> type) as the org and dir
component are aligned to 16 bytes for single rays (see embree2/rtcore_ray.h).
This incompatibility will get resolved in a future release, but has to bemaintained
for compatibility currently. Until then, the ray stream API will always use the
single ray layout RTCRay for rays packets of size N=1, and the RTCRayNt layout
for ray packets of size not equal 1. The helper functions above to access a ray
packet of size N take care of this incompatibility.

Some callback functions get passed a hit structure with the following data
members:

Member In/Out Description

instID in instance ID of hit instance
geomID in geometry ID of hit geometry
primID in primitive ID of hit primitive
u in barycentric u-coordinate of hit
v in barycentric v-coordinate of hit
t in hit distance
Ng in unnormalized geometry normal

Table 4.10 – Data fields of a hit.

This structure is in struct of array layout (SOA) for hit packets of size N. The
layout of a hit packet of size N is defined by the RTCHitNt template in embree2/
rtcore_ray.h.

Embree API 36

When the hit packet size is not known at compile time (e.g. when Embree
returns a hit packet in the RTCFilterFuncN callback function), you can use the
helper functions defined in embree2/rtcore_ray.h to access hit packet compo-
nents:

unsigned& RTCHitN_instID(RTCHitN* hits, size_t N, size_t i);
unsigned& RTCHitN_geomID(RTCHitN* hits, size_t N, size_t i);
unsigned& RTCHitN_primID(RTCHitN* hits, size_t N, size_t i);

float& RTCHitN_u (RTCHitN* hits, size_t N, size_t i);
float& RTCHitN_v (RTCHitN* hits, size_t N, size_t i);
float& RTCHitN_t (RTCHitN* hits, size_t N, size_t i);

float& RTCHitN_Ng_x(RTCHitN* hits, size_t N, size_t i);
float& RTCHitN_Ng_y(RTCHitN* hits, size_t N, size_t i);
float& RTCHitN_Ng_z(RTCHitN* hits, size_t N, size_t i);

These helper functions get a pointer to the hit packet (hits parameter), the
packet size N, and returns a reference to some component (e.g. u-component) of
the the ith hit of the packet.

4.4 Ray Queries
The API supports finding the closest hit of a ray segment with the scene (rtcIn-
tersect functions), and determining if any hit between a ray segment and the
scene exists (rtcOccluded functions).

4.4.1 Normal Mode
In normal mode the following API functions should be used to trace rays:

void rtcIntersect (RTCScene scene, RTCRay& ray);
void rtcIntersect4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcIntersect8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcIntersect16(const void* valid, RTCScene scene, RTCRay16& ray);
void rtcOccluded (RTCScene scene, RTCRay& ray);
void rtcOccluded4 (const void* valid, RTCScene scene, RTCRay4& ray);
void rtcOccluded8 (const void* valid, RTCScene scene, RTCRay8& ray);
void rtcOccluded16 (const void* valid, RTCScene scene, RTCRay16& ray);

The rtcIntersect and rtcOccluded function operate on single rays. The
rtcIntersect4 and rtcOccluded4 functions operate on ray packets of size 4.
The rtcIntersect8 and rtcOccluded8 functions operate on ray packets of size
8, and the rtcIntersect16 and rtcOccluded16 functions operate on ray pack-
ets of size 16.

For the ray packet mode with packet size of 4, 8, or 16, the user has to provide
a pointer to 4, 8, or 16 of 32 bit integers that act as a ray activity mask (valid
argument). If one of these integers is set to 0x00000000 the corresponding ray is
considered inactive and if the integer is set to 0xFFFFFFFF, the ray is considered
active. Rays that are inactive will not update any hit information.

Finding the closest hit distance is done through the rtcIntersect type func-
tions. These get the activity mask (valid parameter), the scene (scene param-
eter), and a ray as input (ray parameter). The layout of the ray structure is
described in Section Ray Layout. The user has to initialize the ray origin (org),
ray direction (dir), and ray segment (tnear, tfar). The ray segment has to be
in the range [0,∞], thus ranges that start behind the ray origin are not valid,
but ranges can reach to infinity. The geometry ID (geomID member) has to get

Embree API 37

initialized to RTC_INVALID_GEOMETRY_ID (-1). If the scene contains instances,
also the instance ID (instID) has to get initialized to RTC_INVALID_GEOMETRY_
ID (-1). If the scene contains motion blur geometries, also the ray time (time)
has to get initialized to a value in the range [0, 1]. If ray masks are enabled at
compile time, also the ray mask (mask) has to get initialized. After tracing the
ray, the hit distance (tfar), geometry normal (Ng), local hit coordinates (u, v),
geometry ID (geomID), and primitive ID (primID) are set. If the scene contains
instances, also the instance ID (instID) is set, if an instance is hit. The geometry
ID corresponds to the ID returned at creation time of the hit geometry, and the
primitive ID corresponds to the nth primitive of that geometry, e.g. nth triangle.
The instance ID corresponds to the ID returned at creation time of the instance.

Testing if any geometry intersects with the ray segment is done through the
rtcOccluded functions. Initialization has to be done as for rtcIntersect. If
some geometry got found along the ray segment, the geometry ID (geomID) will
get set to 0. Other hit information of the ray is undefined after calling rtcOc-
cluded.

In normal mode, data alignment requirements for ray query functions oper-
ating on single rays is 16 bytes for the ray. Data alignment requirements for
query functions operating on AOS packets of 4, 8, or 16 rays, is 16, 32, and 64
bytes respectively, for the valid mask and the ray. To operate on packets of 4
rays, the CPU has to support SSE, to operate on packets of 8 rays, the CPU has to
support AVX-256, and to operate on packets of 16 rays, the CPU has to support
AVX512 instructions. Additionally, the required ISA has to be enabled in Embree
at compile time to use the desired packet size.

The following code shows an example of setting up a single ray and traces it
through the scene:

RTCRay ray;
ray.org = ray_origin;
ray.dir = ray_direction;
ray.tnear = 0.0f;
ray.tfar = inf;
ray.instID = RTC_INVALID_GEOMETRY_ID;
ray.geomID = RTC_INVALID_GEOMETRY_ID;
ray.primID = RTC_INVALID_GEOMETRY_ID;
ray.mask = 0xFFFFFFFF;
ray.time = 0.0f;
rtcIntersect(scene, ray);

See tutorial Triangle Geometry for a complete example of how to trace rays.

4.4.2 Ray Stream Mode
For the stream mode new functions got introduced that operate on streams of
rays:

void rtcIntersect1M (RTCScene scene, const RTCIntersectContext* context,
RTCRay* rays, size_t M, size_t stride);

void rtcIntersect1Mp (RTCScene scene, const RTCIntersectContext* context,
RTCRay**rays, size_t M);

void rtcIntersectNM (RTCScene scene, const RTCIntersectContext* context,
RTCRayN* rays, size_t N, size_t M, size_t stride);

void rtcIntersectNp (RTCScene scene, const RTCIntersectContext* context,
RTCRayNp& rays, size_t N);

void rtcOccluded1M (RTCScene scene, const RTCIntersectContext* context,
RTCRay* rays, size_t M, size_t stride);

Embree API 38

void rtcOccluded1Mp (RTCScene scene, const RTCIntersectContext* context,
RTCRay** rays, size_t M);

void rtcOccludedNM (RTCScene scene, const RTCIntersectContext* context,
RTCRayN* rays, size_t N, size_t M, size_t stride);

void rtcOccludedNp (RTCScene scene, const RTCIntersectContext* context,
RTCRayNp& rays, size_t N, size_t flags);

The rtcIntersectNM and rtcOccludedNM ray stream functions operate on
an array of M ray packets of packet size N. The offset in bytes between consecutive
ray packets can be specified by the stride parameter. Data alignment require-
ments for ray streams is 16 bytes. The packet size N has to be larger than 0 and
the stream size M can be an arbitrary positive integer including 0. Tracing for
example a ray stream consisting of four 8-wide SOA ray packets just requires to
set the parameters N to 8, M to 4 and the stride to sizeof(RTCRay8). A ray in a
ray stream is considered inactive during traversal/intersection if its tnear value
is larger than its tfar value.

The ray streams functions rtcIntersect1M and rtcOccluded1M are just a
shortcut for single ray streams with a packet size of N=1. rtcIntersect1Mp and
rtcOccluded1Mp are similar to rtcIntersect1M and rtcOccluded1Mwhile tak-
ing a stream of pointers to single rays as input. The rtcIntersectNp and rt-
cOccludedNp functions do not require the individual components of the SOA ray
packets to be stored sequentially in memory, but at different adresses as specified
in the RTCRayNp structure.

The intersection context passed to the stream version of the ray query func-
tions, can specify some intersection flags to optimize traversal and a userRayExt
pointer that can be used to extent the ray with additional data as described in Sec-
tion Extending the Ray Structure. The intersection context is propagated to each
stream user callback function invoked.

struct RTCIntersectContext
{
RTCIntersectFlags flags; //!< intersection flags
void* userRayExt; //!< can be used to pass extended ray data to callbacks

};

As intersection flag the user can currently specify if Embree should optimize
traversal for coherent or incoherent ray distributions.

enum RTCIntersectFlags
{
RTC_INTERSECT_COHERENT = 0, //!< optimize for coherent rays
RTC_INTERSECT_INCOHERENT = 1 //!< optimize for incoherent rays

};

The following code shows an example of setting up a stream of single rays
and tracing it through the scene:

RTCRay rays[128];

/* first setup all rays */
for (size_t i=0; i<128; i++)
{
rays[i].org = calculate_ray_org(i);
rays[i].dir = calculate_ray_dir(i);
rays[i].tnear = 0.0f;
rays[i].tfar = inf;
rays[i].instID = RTC_INVALID_GEOMETRY_ID;
rays[i].geomID = RTC_INVALID_GEOMETRY_ID;

Embree API 39

rays[i].primID = RTC_INVALID_GEOMETRY_ID;
rays[i].mask = 0xFFFFFFFF;
rays[i].time = 0.0f;

}

/* now create a context and trace the ray stream */
RTCIntersectContext context;
context.flags = RTC_INTERSECT_INCOHERENT;
context.userRayExt = nullptr;
rtcIntersectNM(scene, &context, &rays, 1, 128, sizeof(RTCRay));

See tutorial Stream Viewer for a complete example of how to trace ray
streams.

4.5 Interpolation of Vertex Data
Smooth interpolation of per-vertex data is supported for triangle meshes, quad
meshs, hair geometry, line segment geometry, and subdivision geometry using
the rtcInterpolate2API call. This interpolation function does ignore displace-
ments and always interpolates the underlying base surface.

void rtcInterpolate2(RTCScene scene,
unsigned geomID, unsigned primID,
float u, float v,
RTCBufferType buffer,
float* P,
float* dPdu, float* dPdv,
float* ddPdudu, float* ddPdvdv, float* ddPdudv,
size_t numFloats);

This call smoothly interpolates the per-vertex data stored in the specified
geometry buffer (buffer parameter) to the u/v location (u and v parameters)
of the primitive (primID parameter) of the geometry (geomID parameter) of the
specified scene (scene parameter). The interpolation buffer (buffer parameter)
has to contain (at least) numFloats floating point values per vertex to interpolate.
As interpolation buffer one can specify the RTC_VERTEX_BUFFER0 and RTC_VER-
TEX_BUFFER1 as well as one of two special user vertex buffers RTC_USER_VER-
TEX_BUFFER0 and RTC_USER_VERTEX_BUFFER1. These user vertex buffers can
only get set using the rtcSetBuffer2 call, they cannot get managed internally
by Embree as they have no default layout. The last element of the buffer has to
be padded to 16 bytes, such that it can be read safely using SSE instructions.

The rtcInterpolate call stores numFloats interpolated floating point val-
ues to the memory location pointed to by P. One can avoid storing the interpo-
lated value by setting P to NULL.

The first order derivative of the interpolation by u and v are stored at the
dPdu and dPdv memory locations. One can avoid storing first order derivatives
by setting both dPdu and dPdv to NULL.

The second order derivatives are stored at the ddPdudu, ddPdvdv, and ddP-
dudv memory locations. One can avoid storing second order derivatives by set-
ting these three pointers to NULL.

The RTC_INTERPOLATE algorithm flag of a scene has to be enabled to perform
interpolations.

It is explicitly allowed to call this function on disabled geometries. This
makes it possible to use a separate subdivisionmeshwith different vertex creases,
edge creases, and boundary handling for interpolation of texture coordinates if
that is necessary.

Embree API 40

The applied interpolation will do linear interpolation for triangle and quad
meshes, linear interpolation for line segments, cubic Bézier interpolation for hair,
and apply the full subdivision rules for subdivision geometry.

There is also a second interpolate call rtcInterpolateN2 that can be used
for ray packets.

void rtcInterpolateN2(RTCScene scene, unsigned geomID,
const void* valid, const unsigned* primIDs,
const float* u, const float* v, size_t numUVs,
RTCBufferType buffer,
float* dP,
float* dPdu, float* dPdv,
float* ddPdudu, float* ddPdvdv, float* ddPdudv,
size_t numFloats);

This call is similar to the first version, but gets passed numUVs many u/v co-
ordinates and a valid mask (valid parameter) that specifies which of these co-
ordinates are valid. The valid mask points to numUVs integers and a value of -1
denotes valid and 0 invalid. If the valid pointer is NULL all elements are considers
valid. The destination arrays are filled in structure of array (SoA) layout.

See tutorial Interpolation for an example of using the rtcInterpolate2 func-
tion.

4.6 Buffer Sharing
Embree supports sharing of buffers with the application. Each buffer that can
be mapped for a specific geometry can also be shared with the application, by
passing a pointer, offset, stride, and number of elements of the application side
buffer using the rtcSetBuffer2 API function.

void rtcSetBuffer2(RTCScene scene, unsigned geomID, RTCBufferType type,
void* ptr, size_t offset, size_t stride, size_t size);

The rtcSetBuffer2 function has to get called before any call to rtcMap-
Buffer for that buffer, otherwise the buffer will get allocated internally and the
call to rtcSetBuffer2 will fail. The buffer has to remain valid as long as the
geometry exists, and the user is responsible to free the buffer when the geome-
try gets deleted. When a buffer is shared, it is safe to modify that buffer without
mapping and unmapping it. However, for dynamic scenes one still has to call
rtcUpdate for modified geometries and the buffer data has to stay constant from
the rtcCommit call to after the last ray query invocation.

The offset parameter specifies a byte offset to the start of the first element,
the stride parameter specifies a byte stride between the different elements of
the shared buffer and the size parameter specified the number of elements
stored inside the buffer. This support for offset and stride allows the applica-
tion quite some freedom in the data layout of these buffers, however, some re-
strictions apply. Index buffers always store 32 bit indices and vertex buffers al-
ways store single precision floating point data. The start address ptr+offset
and stride always have to be aligned to 4 bytes, otherwise the rtcSetBuffer2
function will fail. The size parameter can be used to change the size of a buffer,
which makes it possible to change the number of elements inside a mesh (by
changing the size of the RTC_INDEX_BUFFER).

For vertex buffers (RTC_VERTEX_BUFFER and RTC_USER_VERTEX_BUFFER),
the last element must be readable using SSE instructions, thus padding the last
element to 16 bytes size is required for some layouts.

The following is an example of how to create a mesh with shared index and
vertex buffers:

Embree API 41

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTriangles, numVertices);
rtcSetBuffer2(scene, geomID, RTC_VERTEX_BUFFER, vertexPtr, 0, 3*sizeof(float), numVertices);
rtcSetBuffer2(scene, geomID, RTC_INDEX_BUFFER, indexPtr, 0, 3*sizeof(int), numTriangles);

Sharing buffers can significantly reduce the memory required by the applica-
tion, thus we recommend using this feature. When enabling the RTC_COMPACT
scene flag, the spatial index structures of Embree might also share the vertex
buffer, resulting in even higher memory savings.

4.7 Multi-Segment Motion Blur
All geometry types support multi-segment motion blur with equidistant time
steps and arbitrary number of time steps in the range of 2 to 129. Each geom-
etry can have a different number of time steps. Some motion blur geometry is
constructed by passing the number of time steps to the geometry construction
function and setting the vertex arrays RTC_VERTEX_BUFFER0+t for each time
step t:

unsigned geomID = rtcNewTriangleMesh(scene, geomFlags, numTris, numVertices, 3);
rtcSetBuffer2(scene, geomID, RTC_VERTEX_BUFFER0+0, vertex0Ptr, 0, sizeof(Vertex), numVertices);
rtcSetBuffer2(scene, geomID, RTC_VERTEX_BUFFER0+1, vertex1Ptr, 0, sizeof(Vertex), numVertices);
rtcSetBuffer2(scene, geomID, RTC_VERTEX_BUFFER0+2, vertex2Ptr, 0, sizeof(Vertex), numVertices);
rtcSetBuffer2(scene, geomID, RTC_INDEX_BUFFER, indexPtr, 0, sizeof(Triangle), numTris);

If a scene contains geometries with motion blur, the user has to set the time
member of the ray to a value in the range [0, 1]. The motion blur geometry is
defined by linearly interpolating the geometries of neighboring time steps. Each
ray can specify a different time, even inside a ray packet.

4.8 User Data Pointer
A user data pointer can be specified and queried per geometry, to efficiently map
from the geometry ID returned by ray queries to the application representation
for that geometry.

void rtcSetUserData (RTCScene scene, unsigned geomID, void* ptr);
void* rtcGetUserData (RTCScene scene, unsigned geomID);

The user data pointer of some user defined geometry get additionally passed
to the intersect and occluded callback functions of that user geometry. Further,
the user data pointer is also passed to intersection filter callback functions at-
tached to some geometry.

The rtcGetUserData function is on purpose not thread safe with respect
to other API calls that modify the scene. Consequently, this function can be
used to efficiently query the user data pointer during rendering (also by multiple
threads), but should not get called while modifying the scene with other threads.

4.9 Geometry Mask
A 32 bit geometry mask can be assigned to triangle meshes and hair geometries
using the rtcSetMask call.

rtcSetMask(scene, geomID, mask);

Embree API 42

Only if the bitwise and operation of this mask with the mask stored inside the
ray is not 0, primitives of this geometry are hit by a ray. This feature can be used
to disable selected triangle mesh or hair geometries for specifically tagged rays,
e.g. to disable shadow casting for some geometry. This API feature is disabled
in Embree by default at compile time, and can be enabled in CMake through the
EMBREE_RAY_MASK parameter.

4.10 Filter Functions
The API supports per geometry filter callback functions that are invoked for each
intersection found during the rtcIntersect or rtcOccluded calls. The former
ones are called intersection filter functions, the latter ones occlusion filter func-
tions. The filter functions can be used to implement various useful features, such
as accumulating opacity for transparent shadows, counting the number of sur-
faces along a ray, collecting all hits along a ray, etc. Filter functions can also be
used to selectively reject hits to enable backface culling for some geometries. If
the backfaces should be culled in general for all geometries then it is faster to en-
able EMBREE_BACKFACE_CULLING during compilation of Embree instead of using
filter functions.

4.10.1 Normal Mode
In normal mode the filter functions provided by the user need to have the follow-
ing signature:

void RTCFilterFunc (void* userDataPtr, RTCRay& ray);
void RTCFilterFunc4 (const void* valid, void* userDataPtr, RTCRay4& ray);
void RTCFilterFunc8 (const void* valid, void* userDataPtr, RTCRay8& ray);
void RTCFilterFunc16(const void* valid, void* userDataPtr, RTCRay16& ray);

The valid pointer points to an integer valid mask (0 means invalid and -
1 means valid). The userDataPtr is a user pointer optionally set per geometry
through the rtcSetUserData function. All hit information inside the ray is valid.
If the hit geometry is instanced, the instID member of the ray is valid and the
ray origin, direction, and geometry normal visible through the ray are in object
space.

The filter function can reject a hit by setting the geomIDmember of the ray to
RTC_INVALID_GEOMETRY_ID, otherwise the hit is accepted. The filter function
is not allowed to modify the ray input data (org, dir, time, mask, and tnear
members), but can modify the hit data of the ray (u, v, Ng, tfar, geomID, primID,
and instIDmembers). Updating the tfar distance to a smaller value is possible
without limitation. However, increasing the tfar distance of the ray to a larger
value tfar' , does not guarantee intersections between tfar and tfar' to be
reported later, as the corresponding subtrees might have gotten culled already.

The intersection and occlusion filter functions for different ray types are set
for some geometry of a scene using the following API functions:

void rtcSetIntersectionFilterFunction (RTCScene, unsigned geomID, RTCFilterFunc filter);
void rtcSetIntersectionFilterFunction4 (RTCScene, unsigned geomID, RTCFilterFunc4 filter);
void rtcSetIntersectionFilterFunction8 (RTCScene, unsigned geomID, RTCFilterFunc8 filter);
void rtcSetIntersectionFilterFunction16(RTCScene, unsigned geomID, RTCFilterFunc16 filter);

void rtcSetOcclusionFilterFunction (RTCScene, unsigned geomID, RTCFilterFunc filter);
void rtcSetOcclusionFilterFunction4 (RTCScene, unsigned geomID, RTCFilterFunc4 filter);
void rtcSetOcclusionFilterFunction8 (RTCScene, unsigned geomID, RTCFilterFunc8 filter);
void rtcSetOcclusionFilterFunction16(RTCScene, unsigned geomID, RTCFilterFunc16 filter);

Embree API 43

The intersection and occlusion filter functions of type RTCFilterFunc are
only called by the rtcIntersect and rtcOccluded functions. Similar the filter
functions of type FilterFunc4, FilterFunc8, and FilterFunc16 are called by
rtcIntersect4/8/16 and rtcOccluded4/8/16 of matching width.

4.10.2 Stream Mode
For ray stream mode a new type of filter function RTCFilterFuncN got intro-
duced:

void RTCFilterFuncN (int* valid,
void* userDataPtr,
const RTCIntersectContext* context,
RTCRayN* ray,
const RTCHitN* potentialHit,
const size_t N);

The stream intersection and occlusion filter functions of this new type are
set for some geometry of a scene using the following API functions:

void rtcSetIntersectionFilterFunctionN (RTCScene, unsigned geomID, RTCFilterFuncN filter);
void rtcSetOcclusionFilterFunctionN (RTCScene, unsigned geomID, RTCFilterFuncN filter);

For the callback RTCFilterFuncN, the valid parameter points to an integer
valid mask (0 means invalid and -1 means valid). The userDataPtr is a user
pointer optionally set per geometry through the rtcSetUserData function. The
context parameter points to the intersection context passed to the ray query
function. The ray parameter contains the current ray. All hit data inside the
ray are undefined, except the tfar value. The potentialHit parameter points
to the new hit to test and update. The N parameter is the number of rays and
hits found in the ray and potentialHit. If the hit geometry is instanced, the
instID member of the ray is valid and the ray as well as the potential hit are in
object space.

As the ray packet size N can be arbitrary, the ray and hit should get accessed
through the helper functions as describe in Section Ray Layout.

The callback function has the task to check for each valid ray whether it
wants to accept or reject the corresponding hit. To reject a hit, the filter callback
function just has to write 0 to the integer valid mask of the corresponding ray.
The filter function is not allowed to modify the ray input data (org, dir, time,
mask, and tnear members), nor the potential hit, nor inactive components.

An intersection filter callback function can accept a hit by updating all hit
data members of the ray (u, v, Ng, tfar, geomID, primID, and instID members)
and keep the valid mask set to -1.

An occlusion filter callback function can accept a hit by setting the geomID
member of the ray to 0 and keep the valid mask set to -1.

The intersection filter callback of most applications will just copy the poten-
tialHit into the appropiate fields of the ray, but this is not a requirement and
the hit data of the ray can get modified arbitrarily. Updating the tfar distance
to a smaller value (e.g. the t distance of the potential hit) is possible without lim-
itation. However, increasing the tfar distance of the ray to a larger value tfar'
, does not guarantee intersections between tfar and tfar' to be reported later,
as the corresponding subtrees might have gotten culled already.

Embree API 44

4.11 Displacement Mapping Functions
TheAPI supports displacementmapping for subdivisionmeshes. A displacement
function can be set for some subdivision mesh using the rtcSetDisplacement-
Function API call.

void rtcSetDisplacementFunction2(RTCScene, unsigned geomID, RTCDisplacementFunc, RTCBounds*);

A displacement function of NULLwill delete an already set displacement func-
tion. The bounds parameter is optional. If NULL is passed as bounds, then the dis-
placement shader will get evaluated during the build process to properly bound
displaced geometry. If a pointer to some bounds of the displacement are passed,
then the implementation can choose to use these bounds to bound displaced ge-
ometry. When bounds are specified, then these bounds have to be conservative
and should be tight for best performance.

The displacement function has to have the following type:

typedef void (*RTCDisplacementFunc2)(void* ptr,
unsigned geomID, unsigned primID, unsigned timeStep,
const float* u, const float* v,
const float* nx, const float* ny, const float* nz,
float* px, float* py, float* pz,
size_t N);

The displacement function is called with the user data pointer of the geom-
etry (ptr), the geometry ID (geomID), and primitive ID (primID) of a patch to
displace. For motion blur the time step timeStep is also specified, such that the
function can be time varying. For the patch, a number N of points to displace are
specified in a struct of array layout. For each point to displace the local patch
UV coordinates (u and v arrays), the normalized geometry normal (nx, ny, and
nz arrays), as well as world space position (px, py, and pz arrays) are provided.
The task of the displacement function is to use this information and move the
world space position inside the allowed specified bounds around the point.

All passed arrays are guaranteed to be 64 bytes aligned, and properly padded
to make wide vector processing inside the displacement function possible.

The displacement mapping functions might get called during the rtcCommit
call, or lazily during the rtcIntersect or rtcOccluded calls.

Also see tutorial Displacement Geometry for an example of how to use the
displacement mapping functions.

4.12 Extending the Ray Structure

4.12.1 Normal Mode
If Embree is used in normal mode, the ray passed to the filter callback functions
and user geometry callback functions is guaranteed to be the same ray pointer
initially provided to the ray query function by the user. For that reason, it is safe
to extend the ray by additional data and access this data inside the filter callback
functions (e.g. to accumulate opacity) and user geometry callback functions.

4.12.2 Stream Mode
If Embree is used in stream mode, the ray passed to the filter callback and user
geometry callback functions is not guaranteed to be the same ray pointer initially
passed to the ray query function, as the stream implementation may decide to
copy rays around, reorder them, and change the data layout internally when
appropiate (e.g. SOA to AOS conversion).

Embree API 45

To identify specific rays in the callback functions, the user has to pass an
ID with each ray and set the userRayExt member of the intersection context
to point to its ray extensions. The ray extensions can be stored in a seprarate
memory location but also just after the end of each ordinary ray (or ray packet).
In the latter case, you can just point the userRayExt to the input rays.

To encode a ray ID the ray mask field can be used entirely when the ray
mask feature is disabled, or unused bits of the ray mask can be used in case the
ray mask feature is enabled (e.g. by using the lower 16 bits as ray ID, and the
upper 16 bits as ray mask, and setting the lower 16 bits of each geometry mask
always to 0).

The intersection context provided to the stream ray query functions is passed
to each stream callback function (e.g. RTCIntersectFuncN, RTCIntersect-
Func1Mp, or RTCFilterFuncN). Thus, in the callback function, the ray ID can
get decoded, and the extended ray data accessed through the userRayExt pointer
stored inside the intersection context. For SPMD type programs this access re-
quires gather and scatter operations to access the user ray extensions.

Not that using the ray ID to access the ray extensions is necessary, as the ray
IDs might have changed from the IDs passed to the ray query function. E.g. if
you trace a ray packet with 8 rays 0 to 8, then even if a callback gets called with a
ray packet of 8 rays, they rays might have gotten reordered. Further, the callback
might get called with a subpacket of a size smaller than 8 (e.g. N=5). However,
optimizing for the common case in which Embree keeps such a packet intact
(thus having a special codepath for N=8 and unchanged IDs) can give higher per-
formance.

4.13 Sharing Threads with Embree
On some implementations, Embree supports using the application threads when
building internal data structures, by using the

void rtcCommitThread(RTCScene, unsigned threadIndex, unsigned threadCount);

API call to commit the scene. This function has to get called by all threads
that want to cooperate in the scene commit. Each call is provided the scene to
commit, the index of the calling thread in the range [0, threadCount-1], and the
number of threads that will call into this commit operation for the scene. All
threads will return again from this function after the scene commit is finished.

Multiple such scene commit operations can also be running at the same time,
e.g. it is possible to commit many small scenes in parallel using one thread per
commit operation. Subsequent commit operations for the same scene can use
different number of threads in the rtcCommitThread or use the Embree internal
threads using the rtcCommit call.

Note: When using Embree with the Intel® Threading Building Blocks (which
is the default) you should not use the rtcCommitThread function. Sharing of
your threads with TBB is not possible and TBB will always generate its own
set of threads. We recommend to also use TBB inside your application to share
threads with the Embree library. When using TBB inside your application do
never use the rtcCommitThread function.

Note: When enabling the Embree internal tasking system the rtcCommit-
Thread feature will work as expected and use the application threads for hierar-
chy building.

Embree API 46

4.14 Join Build Operation
If rtcCommit is called multiple times from different threads on the same scene,
then all these threads will join the same scene build operation.

This feature allows a flexible way to lazily create hierarchies during render-
ing. A thread reaching a not yet constructed sub-scene of a two-level scene,
can generate the sub-scene geometry and call rtcCommit on that just generated
scene. During construction, further threads reaching the not-yet-built scene, can
join the build operation by also invoking rtcCommit. A thread that calls rtcCom-
mit after the build finishes, will directly return from the rtcCommit call (even
for static scenes).

Note: When using Embree with the Intel® Threading Building Blocks, the
join mode only works properly starting with TBB v4.4 Update 1. For earlier TBB
versions threads that call rtcCommit to join a running build will just wait for the
build to finish.

4.15 Memory Monitor Callback
Using the memory monitor callback mechanism, the application can track the
memory consumption of an Embree device, and optionally terminate API calls
that consume too much memory.

The user provided memory monitor callback function has to have the follow-
ing signature:

bool (*RTCMemoryMonitorFunc)(const ssize_t bytes, const bool post);

A single such callback function per device can be registered by calling

rtcDeviceSetMemoryMonitorFunction(RTCDevice device, RTCMemoryMonitorFunc func);

and deregistered again by calling it with NULL. Once registered the Embree
device will invoke the callback function before or after it allocates or frees im-
portant memory blocks. The callback function might get called from multiple
threads concurrently.

The application can track the current memory usage of the Embree device by
atomically accumulating the provided bytes input parameter. This parameter
will be >0 for allocations and <0 for deallocations. The post input parameter
is true if the callback function was invoked after the allocation or deallocation,
otherwise it is false.

Embree will continue its operation normally when returning true from the
callback function. If false is returned, Embree will cancel the current operation
with the RTC_OUT_OF_MEMORY error code. Cancellingwill only happenwhen
the callback was called for allocations (bytes > 0), otherwise the cancel request
will be ignored. If a callback that was invoked before the allocation happens
(post == false) cancels the operation, then the bytes parameter should not get
accumulated, as the allocation will never happen. If a callback that was called
after the allocation happened (post == true) cancels the operation, then the
bytes parameter should get accumulated, as the allocation properly happened.
Issuing multiple cancel requests for the same operation is allowed.

Embree API 47

4.16 Progress Monitor Callback
The progress monitor callback mechanism can be used to report progress of hi-
erarchy build operations and to cancel long lasting build operations.

The user provided progress monitor callback function has to have the follow-
ing signature:

bool (*RTCProgressMonitorFunc)(void* userPtr, const double n);

A single such callback function can be registered per scene by calling

rtcSetProgressMonitorFunction(RTCScene, RTCProgressMonitorFunc, void* userPtr);

and deregistered again by calling it with NULL for the callback function. Once
registered Embree will invoke the callback function multiple times during hierar-
chy build operations of the scene, by providing the userPtr pointer that was set
at registration time, and a double n in the range [0, 1] estimating the completion
amount of the operation. The callback function might get called from multiple
threads concurrently.

When returning true from the callback function, Embree will continue the
build operation normally. When returning false Embree will cancel the build
operation with the RTC_CANCELLED error code. Issuing multiple cancel re-
quests for the same build operation is allowed.

4.17 Configuring Embree
Some internal device parameters can be set and queried using the rtcDevice-
SetParameter1i and rtcDeviceGetParameter1i API call. The parameters
from the following table are available to set/query:

For example, to configure the size of the internal software cache that is used
to handle subdivision surfaces use the RTC_SOFTWARE_CACHE_SIZE parameter to
set desired size of the cache in bytes:

rtcDeviceSetParameter1i(device, RTC_SOFTWARE_CACHE_SIZE, bytes);

The software cache cannot get configured while any Embree API call is exe-
cuted. Best configure the size of the cache only once at application start.

4.18 Limiting number of Build Threads
You can use the TBB API to limit the number of threads used by Embree during
hierarchy construction. Therefore just create a global taskscheduler_init object,
initialized with the number of threads to use:

#include <tbb/tbb.h>

tbb::task_scheduler_init init(numThreads);

Embree API 48

Table 4.11 – Parameters for rtcDeviceSetParameter and rtcDeviceGetParameter.

Parameter Description Read/Write

RTC_CONFIG_VERSION_MAJOR returns Embree major version Read only
RTC_CONFIG_VERSION_MINOR returns Embree minor version Read only
RTC_CONFIG_VERSION_PATCH returns Embree patch version Read only
RTC_CONFIG_VERSION returns Embree version as integer e.g. Embree

v2.8.2 → 20802
Read only

RTC_CONFIG_INTERSECT1 checks if rtcIntersect1 is supported Read only
RTC_CONFIG_INTERSECT4 checks if rtcIntersect4 is supported Read only
RTC_CONFIG_INTERSECT8 checks if rtcIntersect8 is supported Read only
RTC_CONFIG_INTERSECT16 checks if rtcIntersect16 is supported Read only
RTC_CONFIG_INTERSECT_STREAM checks if rtcIntersect1M, rtcIntersect1Mp,

rtcIntersectNM, and rtcIntersectNp are
supported

Read only

RTC_CONFIG_TRIANGLE_GEOMETRY checks if triangle geometries are supported Read only
RTC_CONFIG_QUAD_GEOMETRY checks if quad geometries are supported Read only
RTC_CONFIG_LINE_GEOMETRY checks if line geometries are supported Read only
RTC_CONFIG_HAIR_GEOMETRY checks if hair geometries are supported Read only
RTC_CONFIG_SUBDIV_GEOMETRY checks if subdivision meshes are supported Read only
RTC_CONFIG_USER_GEOMETRY checks if user geometries are supported Read only
RTC_CONFIG_RAY_MASK checks if ray masks are supported Read only
RTC_CONFIG_BACKFACE_CULLING checks if backface culling is supported Read only
RTC_CONFIG_INTERSECTION_FILTER checks if intersection filters are enabled Read only
RTC_CONFIG_INTERSECTION_FILTER_RESTORE checks if intersection filters restore previous hit Read only
RTC_CONFIG_IGNORE_INVALID_RAYS checks if invalid rays are ignored Read only
RTC_CONFIG_TASKING_SYSTEM return used tasking system (0 = INTERNAL, 1 =

TBB)
Read only

RTC_SOFTWARE_CACHE_SIZE Configures the software cache size (used to
cache subdivision surfaces for instance). The
size is specified as an integer number of bytes.
The software cache cannot be configured during
rendering.

Write only

RTC_CONFIG_COMMIT_JOIN Checks if rtcCommit can be used to join build
operation (not supported when Embree is
compiled with some older TBB versions)

Read only

RTC_CONFIG_COMMIT_THREAD Checks if rtcCommitThread is available (not
supported when Embree is compiled with some
older TBB versions)

Read only

4.19 Thread Creation and Affinity Settings
Tasking systems like TBB create worker threads on demand which will add a run-
time overhead for the very first rtcCommit call. In case you want to benchmark
the scene build time, you should start threads at application startup. You can let
Embree start TBB threads by passing start_threads=1 to the init parameter of
rtcNewDevice.

On machines with a high thread count (e.g. dual-socket Xeon or Xeon Phi

Embree API 49

machines), affinitizing TBB worker threads increases build and rendering per-
formance. You can let Embree affinitize TBB worker threads by passing set_
affinity=1 to the init parameter of rtcNewDevice.

All Embree tutorials automatically start and affinitize TBB worker threads by
passing start_threads=1,set_affinity=1 to rtcNewDevice.

4.20 Huge Page Support
We recommend using 2MB huge pages with Embree as this improves ray tracing
performance by about 10%. Huge pages are currently only working under Linux
with Embree.

To enable transparent huge page support under Linux execute the following
as root:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

When transparent huge pages are enabled, the kernel tries to merge 4k pages
to 2MB pages when possible as a background job. See the following webpage
for more information on transparent huge pages under Linux https://www.
kernel.org/doc/Documentation/vm/transhuge.txt.

Using that first approach the transitioning from 4k to 2MB pages might take
some time. For that reason Embree also supports allocating 2MB pages directly
when a huge page pool is configured. To configure 2GB of adress space for huge
page allocation, execute the following as root:

echo 1000 > /proc/sys/vm/nr_overcommit_hugepages

See the following webpage for more information on huge pages under Linux
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt.

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

50

Chapter 5
Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how Em-
bree can be used and extended. All tutorials exist in an ISPC and C++ version
to demonstrate the two versions of the API. Look for files named tutorial-
name_device.ispc for the ISPC implementation of the tutorial, and files named
tutorialname_device.cpp for the single ray C++ version of the tutorial. To
start the C++ version use the tutorialname executables, to start the ISPC ver-
sion use the tutorialname_ispc executables.

For all tutorials, you can select an initial camera using the -vp (camera po-
sition), -vi (camera look-at point), -vu (camera up vector), and -fov (vertical
field of view) command line parameters:

./triangle_geometry -vp 10 10 10 -vi 0 0 0

You can select the initial windows size using the -size command line param-
eter, or start the tutorials in fullscreen using the -fullscreen parameter:

./triangle_geometry -size 1024 1024

./triangle_geometry -fullscreen

Implementation specific parameters can be passed to the ray tracing core
through the -rtcore command line parameter, e.g.:

./triangle_geometry -rtcore verbose=2,threads=1,accel=bvh4.triangle1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest. With
the left mouse button you can rotate around the center of interest (the point
initially set with -vi). Holding Control pressed while clicking the left mouse
button rotates the camera around its location. You can also use the arrow keys
for navigation.

You can use the following keys:

F1 Default shading
F2 Gray EyeLight shading
F3 Wireframe shading
F4 UV Coordinate visualization
F5 Geometry normal visualization
F6 Geometry ID visualization
F7 Geometry ID and Primitive ID visualization
F8 Simple shading with 16 rays per pixel for benchmarking.
F9 Switches to render cost visualization. Pressing again reduces brightness.
F10 Switches to render cost visualization. Pressing again increases brightness.

Embree Tutorials 51

f Enters or leaves full screen mode.
c Prints camera parameters.
ESC Exits the tutorial.
q Exits the tutorial.

5.1 Triangle Geometry

Figure 5.1

This tutorial demonstrates the creation of a static cube and ground plane
using triangle meshes. It also demonstrates the use of the rtcIntersect and
rtcOccluded functions to render primary visibility and hard shadows. The cube
sides are colored based on the ID of the hit primitive.

5.2 Dynamic Scene

Figure 5.2

This tutorial demonstrates the creation of a dynamic scene, consisting of sev-
eral deformed spheres. Half of the spheres use the RTC_GEOMETRY_DEFORMABLE
flag, which allows Embree to use a refitting strategy for these spheres, the other
half uses the RTC_GEOMETRY_DYNAMIC flag, causing a rebuild of their spatial data
structure each frame. The spheres are colored based on the ID of the hit sphere
geometry.

Embree Tutorials 52

Figure 5.3

5.3 User Geometry
This tutorial shows the use of user defined geometry, to re-implement instancing
and to add analytic spheres. A two level scene is created, with a triangle mesh
as ground plane, and several user geometries, that instance other scenes with
a small number of spheres of different kind. The spheres are colored using the
instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry, instanced in different ways can be distinguished.

5.4 Viewer

Figure 5.4

This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing
the index and vertex buffer with the application. Demonstrated is also how to
support additional per vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to work:

./viewer -i model.obj

5.5 Stream Viewer
This tutorial demonstrates a simple OBJ viewer that demonstrates the use of ray
streams. You need to specify an OBJ file at the command line for this tutorial to
work:

./viewer_stream -i model.obj

Embree Tutorials 53

Figure 5.5

5.6 Instanced Geometry

Figure 5.6

This tutorial demonstrates the in-build instancing feature of Embree, by in-
stancing a number of other scenes build from triangulated spheres. The spheres
are again colored using the instance ID and geometry ID of the hit sphere, to
demonstrate how the same geometry, instanced in different ways can be distin-
guished.

5.7 Intersection Filter

Figure 5.7

This tutorial demonstrates the use of filter callback functions to efficiently
implement transparent objects. The filter function used for primary rays, lets the
ray pass through the geometry if it is entirely transparent. Otherwise the shading
loop handles the transparency properly, by potentially shooting secondary rays.

Embree Tutorials 54

The filter function used for shadow rays accumulates the transparency of all
surfaces along the ray, and terminates traversal if an opaque occluder is hit.

5.8 Pathtracer

Figure 5.8

This tutorial is a simple path tracer, building on the viewer tutorial.
You need to specify an OBJ file and light source at the command line for this

tutorial to work:

./pathtracer -i model.obj -ambientlight 1 1 1

As example models we provide the “Austrian Imperial Crown” model by Mar-
tin Lubich and the “Asian Dragon” model from the Stanford 3D Scanning Repos-
itory.

crown.zip
asian_dragon.zip
To render these models execute the following:

./pathtracer -c crown/crown.ecs

./pathtracer -c asian_dragon/asian_dragon.ecs

5.9 Hair

Figure 5.9

This tutorial demonstrates the use of the hair geometry to render a hairball.

www.loramel.net
www.loramel.net
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/embree/models/releases/download/release/crown.zip
https://github.com/embree/models/releases/download/release/asian_dragon.zip

Embree Tutorials 55

5.10 Bézier Curves

Figure 5.10

This tutorial demonstrates the use of the Bézier curve geometry.

5.11 Subdivision Geometry

Figure 5.11

This tutorial demonstrates the use of Catmull Clark subdivision surfaces. Per
default the edge tessellation level is set adaptively based on the distance to the
camera origin. Embree currently supports three different modes for efficiently
handling subdivision surfaces in various rendering scenarios. These three modes
can be selected at the command line, e.g. -lazy builds internal per subdivision
patch data structures on demand, -cache uses a small (per thread) tessellation
cache for caching per patch data, and -pregenerate to generate and store most
per patch data during the initial build process. The cachemode is most effective
for coherent rays while providing a fixed memory footprint. The pregenerate
modes is most effective for incoherent ray distributions while requiring more
memory. The lazy mode works similar to the pregenerate mode but provides
a middle ground in terms of memory consumption as it only builds and stores
data only when the corresponding patch is accessed during the ray traversal. The
cache mode is currently a bit more efficient at handling dynamic scenes where
only the edge tessellation levels are changing per frame.

Embree Tutorials 56

5.12 Displacement Geometry

Figure 5.12

This tutorial demonstrates the use of Catmull Clark subdivision surfaces with
procedural displacement mapping using a constant edge tessellation level.

5.13 Motion Blur Geometry

Figure 5.13

This tutorial demonstrates rendering of motion blur using the multi segment
motion blur feature. Shown is motion blur of a triangle mesh, quad mesh, subdi-
vision surface, line segments, hair geometry, bezier curves, instantiated triangle
mesh where the instance moves, instantiated quad mesh where the instance and
the quads move, and user geometry.

The number of time steps used can be configured using the –time-steps and
–time-steps2 command line parameters, and the geometry can be rendered at a
specific time using the the –time command line parameter.

5.14 Interpolation
This tutorial demonstrates interpolation of user defined per vertex data.

5.15 BVH Builder
This tutorial demonstrates how to use the templated hierarchy builders of Em-
bree to build a bounding volume hierarchy with a user defined memory layout
using a high quality SAH builder and very fast morton builder.

Embree Tutorials 57

Figure 5.14

5.16 BVH Access
This tutorial demonstrates how to access the internal triangle acceleration struc-
ture build by Embree. Please be aware that the internal Embree data structures
might change between Embree updates.

5.17 Find Embree
This tutorial demonstrates how to use the FIND_PACKAGE CMake feature to use
an installed Embree. Under Linux and Mac OS X the tutorial finds the Em-
bree installation automatically, under Windows the embree_DIR CMake vari-
able has to be set to the following folder of the Embree installation: C:\Program
Files\Intel\Embree X.Y.Z\lib\cmake\embree-X.Y.Z.

Embree Tutorials 58

© 2009–2017 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark andMobileMark, aremeasured using specific computer systems, components, software, operations
and functions. Any change to any of those factorsmay cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products.
For more complete information visit http://www.intel.com/performance.

OptimizationNotice: Intel’s compilersmay ormay not optimize to the same degree for non-Intelmicroprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

http://www.intel.com/performance

	Embree Overview
	Supported Platforms
	Embree Support and Contact
	Version History
	Acknowledgements

	Installation of Embree
	Windows Installer
	Windows ZIP File
	Linux RPMs
	Linux tar.gz files
	Mac OS X PKG Installer
	Mac OS X tar.gz file
	Linking ISPC applications with Embree

	Compiling Embree
	Linux and Mac OS X
	Windows
	CMake Configuration

	Embree API
	Scene
	Geometries
	Ray Layout
	Ray Queries
	Interpolation of Vertex Data
	Buffer Sharing
	Multi-Segment Motion Blur
	User Data Pointer
	Geometry Mask
	Filter Functions
	Displacement Mapping Functions
	Extending the Ray Structure
	Sharing Threads with Embree
	Join Build Operation
	Memory Monitor Callback
	Progress Monitor Callback
	Configuring Embree
	Limiting number of Build Threads
	Thread Creation and Affinity Settings
	Huge Page Support

	Embree Tutorials
	Triangle Geometry
	Dynamic Scene
	User Geometry
	Viewer
	Stream Viewer
	Instanced Geometry
	Intersection Filter
	Pathtracer
	Hair
	Bézier Curves
	Subdivision Geometry
	Displacement Geometry
	Motion Blur Geometry
	Interpolation
	BVH Builder
	BVH Access
	Find Embree

